Clustering-based spot segmentation of cDNA microarray images
- PMID: 21096143
- DOI: 10.1109/IEMBS.2010.5626430
Clustering-based spot segmentation of cDNA microarray images
Abstract
Microarrays are utilized as that they provide useful information about thousands of gene expressions simultaneously. In this study segmentation step of microarray image processing has been implemented. Clustering-based methods, fuzzy c-means and k-means, have been applied for the segmentation step that separates the spots from the background. The experiments show that fuzzy c-means have segmented spots of the microarray image more accurately than the k-means.
Similar articles
-
A classification-based segmentation of cDNA microarray images using Support Vector Machines.Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:875-8. doi: 10.1109/IEMBS.2008.4649293. Annu Int Conf IEEE Eng Med Biol Soc. 2008. PMID: 19162796
-
Multichannel segmentation of cDNA microarray images using the Bayes classifier.Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:3466-9. doi: 10.1109/IEMBS.2007.4353077. Annu Int Conf IEEE Eng Med Biol Soc. 2007. PMID: 18002743
-
Automatic microarray spot segmentation using a Snake-Fisher model.IEEE Trans Med Imaging. 2008 Jun;27(6):847-57. doi: 10.1109/TMI.2008.915697. IEEE Trans Med Imaging. 2008. PMID: 18541491
-
Spot detection and image segmentation in DNA microarray data.Appl Bioinformatics. 2005;4(1):1-11. doi: 10.2165/00822942-200504010-00001. Appl Bioinformatics. 2005. PMID: 16000008 Review.
-
[Progress in a research on biochip image analysis].Zhongguo Yi Liao Qi Xie Za Zhi. 2007 Mar;31(2):108-11. Zhongguo Yi Liao Qi Xie Za Zhi. 2007. PMID: 17552173 Review. Chinese.
Cited by
-
The Comparison of Clustering Algorithms K-Means and Fuzzy C-Means for Segmentation Retinal Blood Vessels.Acta Inform Med. 2020 Mar;28(1):42-47. doi: 10.5455/aim.2020.28.42-47. Acta Inform Med. 2020. PMID: 32210514 Free PMC article.
-
A Combinational Clustering Based Method for cDNA Microarray Image Segmentation.PLoS One. 2015 Aug 4;10(8):e0133025. doi: 10.1371/journal.pone.0133025. eCollection 2015. PLoS One. 2015. PMID: 26241767 Free PMC article.