Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010:2010:2585-8.
doi: 10.1109/IEMBS.2010.5626667.

Modal analysis of ultrasound radiation force generated shear waves on arteries

Affiliations

Modal analysis of ultrasound radiation force generated shear waves on arteries

Miguel Bernal et al. Annu Int Conf IEEE Eng Med Biol Soc. 2010.

Abstract

Arterial elasticity has gained importance in the past few decades as a predictor of cardiovascular diseases and mortality. Measuring the speed of propagation of the pressure wave traveling in the wall of the arteries has been used for a very long time to estimate the mechanical properties of the artery. Two of the major disadvantages of this method are the low temporal resolution (1 sample per second) and the low spatial resolution (carotid-femoral or carotid-radial segments). In our laboratory, we have been working on an ultrasound radiation force-based method to generate high frequency local shear waves, which will allow the study of the mechanical properties of short arterial segments within the heart cycle. In this work we present a modal analysis of the waves generated by our method on an excised pig artery. By doing a two-dimensional fast Fourier transform (2D FFT) of the propagating waves, it was possible to differentiate the multiple Lamb-like modes propagating in the wall. These modes showed changes with varying transmural pressure; this was expected as the arterial stiffness increases with pressure. This work shows the feasibility of our method for the study and characterization of propagating modes in the arterial wall. Future studies include developing a Lamb wave model for cylindrical viscoelastic structures to fit our data.

PubMed Disclaimer

Publication types

LinkOut - more resources