Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Apr;119(4):439-45.
doi: 10.1289/ehp.1002383. Epub 2010 Nov 19.

Global influenza seasonality: reconciling patterns across temperate and tropical regions

Affiliations
Review

Global influenza seasonality: reconciling patterns across temperate and tropical regions

James Tamerius et al. Environ Health Perspect. 2011 Apr.

Abstract

Background: Despite the significant disease burden of the influenza virus in humans, our understanding of the basis for its pronounced seasonality remains incomplete. Past observations that influenza epidemics occur in the winter across temperate climates, combined with insufficient knowledge about the epidemiology of influenza in the tropics, led to the perception that cool and dry conditions were a necessary, and possibly sufficient, driver of influenza epidemics. Recent reports of substantial levels of influenza virus activity and well-defined seasonality in tropical regions, where warm and humid conditions often persist year-round, have rendered previous hypotheses insufficient for explaining global patterns of influenza.

Objective: In this review, we examined the scientific evidence for the seasonal mechanisms that potentially explain the complex seasonal patterns of influenza disease activity observed globally.

Methods: In this review we assessed the strength of a range of hypotheses that attempt to explain observations of influenza seasonality across different latitudes and how they relate to each other. We reviewed studies describing population-scale observations, mathematical models, and ecological, laboratory, and clinical experiments pertaining to influenza seasonality. The literature review includes studies that directly mention the topic of influenza seasonality, as well as other topics we believed to be relevant. We also developed an analytical framework that highlights the complex interactions among environmental stimuli, mediating mechanisms, and the seasonal timing of influenza epidemics and identify critical areas for further research.

Conclusions: The central questions in influenza seasonality remain unresolved. Future research is particularly needed in tropical localities, where our understanding of seasonality remains poor, and will require a combination of experimental and observational studies. Further understanding of the environmental factors that drive influenza circulation also may be useful to predict how dynamics will be affected at regional levels by global climate change.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Seasonal patterns of influenza in four sites across several latitudes worldwide. Temperate epidemics occur predominantly during the winter months, when the environment is cool and dry and solar radiation is low. Seasonal influenza activity in the tropics appears to be greatest during the rainy season. The bar charts indicate the average number of detected influenza isolates (y-axis) over several years for Singapore (Chew et al. 1998), Fortaleza, Brazil (Moura et al. 2009), Bismarck, North Dakota, USA (Irmen and Kelleher 2000), and Sydney, Australia (Keflemariam et al. 2004).
Figure 2
Figure 2
Putative relationship and causal connections among key seasonal stimuli, mediating mechanisms, and influenza epidemics. The notation adjacent to each seasonal stimulus indicates whether it potentially explains influenza seasonality in the tropics (Tr), temperate regions (T), or both (T/Tr). The diagram also includes a component depicting the effects of intrinsic dynamics.

References

    1. Abu-Amer Y, Bar-Shavit Z. Impaired bone marrow-derived macrophage differentiation in vitamin D deficiency. Cell Immunol. 1993;151:356–368. - PubMed
    1. Ahmed QA, Arabi YM, Memish ZA. Health risks at the Hajj. Lancet. 2006;367:1008–1015. - PMC - PubMed
    1. Aloia JF, Li-Ng M. Re: epidemic influenza and vitamin D. Epidemiol Infect. 2007;135:1095–1096. - PMC - PubMed
    1. Alonso WJ, Viboud C, Simonsen L, Hirano EW, Daufenbach LZ, Miller MA. Seasonality of influenza in Brazil: a traveling wave from the Amazon to the subtropics. Am J Epidemiol. 2007;165:1434–1442. - PubMed
    1. Andreasen V, Viboud C, Simonsen L. Epidemiologic characterization of the 1918 influenza pandemic summer wave in Copenhagen: implications for pandemic control strategies. J Infect Dis. 2008;197:270–278. - PMC - PubMed

Publication types