Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Dec;12(12):1290-6.
doi: 10.1093/eurjhf/hfq102.

Myocardial expression of FOXO3a-Atrogin-1 pathway in human heart failure

Affiliations
Free article

Myocardial expression of FOXO3a-Atrogin-1 pathway in human heart failure

Gennaro Galasso et al. Eur J Heart Fail. 2010 Dec.
Free article

Abstract

Aims: Several studies have shown that muscle mass loss is an important pathogenic issue in heart failure (HF). Atrogin-1 is a F-box protein selectively expressed in cardiac and skeletal muscle tissue, which plays a pivotal role in muscle wasting regulation. The aim of this study was to investigate the expression of Atrogin-1 and the molecular pathway involved in Atrogin-1 regulation in human HF.

Methods and results: Cardiac tissue from patients with HF (HF group: n=10) or with normal left ventricular function (control group: n=9) was studied by western blot and real time-PCR analysis. Linear regression analysis between patients left ventricular ejection fraction (LVEF) and Atrogin1 or its regulator Forkhead box O 3a (Foxo3a) myocardial expression was performed to test correlations between protein expression and LVEF. Western blot analysis revealed that the myocardial expression of Atrogin-1 in the HF group was 2.5-fold increased compared with controls (P=0.007). Accordingly, Atrogin-1 mRNA was 1.5 higher than in controls (P=0.003). The expression of Foxo3a and its up-stream regulator AKT were also measured. Western blot analysis demonstrated in the HF group a 2.56-fold reduction of AKT phosphorylation and a 3.32-fold increase of Foxo3a as compared with controls (P=0.002 and P=0.001, respectively). Finally, linear regression showed a significant relationship between Foxo3a or Atrogin-1 expression and LVEF (R=0.976, P<0.0001 and R=0.895, P=0.003, respectively).

Conclusion: Our results suggest that in human HF, the activity of AKT decreases, with activation of Foxo3a and induction of Atrogin-1, thereby leading to a molecular state that favours heart muscle loss and left ventricular dysfunction.

PubMed Disclaimer

MeSH terms

LinkOut - more resources