Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Mar-Apr;2(2):59-64.
doi: 10.4161/isl.2.2.11171.

Electrical activity in pancreatic islet cells: The VRAC hypothesis

Affiliations
Free article
Review

Electrical activity in pancreatic islet cells: The VRAC hypothesis

Leonard Best et al. Islets. 2010 Mar-Apr.
Free article

Abstract

A major aspect of stimulation of β-cell function by glucose is the induction of electrical activity. The ionic events that underlie β-cell electrical activity are understood in some detail. At sub-stimulatory glucose concentrations, the β-cell is electrically 'silent'. Increasing the glucose concentration to stimulatory levels results in a gradual depolarisation of the membrane potential to a threshold potential where 'spikes' or action potentials are generated. These action potentials represent the gating of voltage-sensitive Ca²(+) channels, leading to Ca²(+) entry into the cell, thus triggering the release of insulin. The stimulatory actions of glucose on the β-cell depend on the metabolism of the hexose. A major question concerns the molecular mechanism(s) whereby β-cell plasma membrane potential is regulated by changes in glucose metabolism in the cell. This article provides a brief summary of the evidence suggesting that, in addition to metabolically-regulated K(ATP) channels, β-cells are equipped with a volume-regulated anion channel that is activated by glucose concentrations within the range effective in modulating electrical activity and insulin release.

PubMed Disclaimer

LinkOut - more resources