Glioblastoma stem-like cells give rise to tumour endothelium
- PMID: 21102433
- DOI: 10.1038/nature09624
Glioblastoma stem-like cells give rise to tumour endothelium
Abstract
Glioblastoma (GBM) is among the most aggressive of human cancers. A key feature of GBMs is the extensive network of abnormal vasculature characterized by glomeruloid structures and endothelial hyperplasia. Yet the mechanisms of angiogenesis and the origin of tumour endothelial cells remain poorly defined. Here we demonstrate that a subpopulation of endothelial cells within glioblastomas harbour the same somatic mutations identified within tumour cells, such as amplification of EGFR and chromosome 7. We additionally demonstrate that the stem-cell-like CD133(+) fraction includes a subset of vascular endothelial-cadherin (CD144)-expressing cells that show characteristics of endothelial progenitors capable of maturation into endothelial cells. Extensive in vitro and in vivo lineage analyses, including single cell clonal studies, further show that a subpopulation of the CD133(+) stem-like cell fraction is multipotent and capable of differentiation along tumour and endothelial lineages, possibly via an intermediate CD133(+)/CD144(+) progenitor cell. The findings are supported by genetic studies of specific exons selected from The Cancer Genome Atlas, quantitative FISH and comparative genomic hybridization data that demonstrate identical genomic profiles in the CD133(+) tumour cells, their endothelial progenitor derivatives and mature endothelium. Exposure to the clinical anti-angiogenesis agent bevacizumab or to a γ-secretase inhibitor as well as knockdown shRNA studies demonstrate that blocking VEGF or silencing VEGFR2 inhibits the maturation of tumour endothelial progenitors into endothelium but not the differentiation of CD133(+) cells into endothelial progenitors, whereas γ-secretase inhibition or NOTCH1 silencing blocks the transition into endothelial progenitors. These data may provide new perspectives on the mechanisms of failure of anti-angiogenesis inhibitors currently in use. The lineage plasticity and capacity to generate tumour vasculature of the putative cancer stem cells within glioblastoma are novel findings that provide new insight into the biology of gliomas and the definition of cancer stemness, as well as the mechanisms of tumour neo-angiogenesis.
Comment in
-
Cancer: Tumour stem cells switch sides.Nature. 2010 Dec 9;468(7325):770-1. doi: 10.1038/468770a. Nature. 2010. PMID: 21150987 No abstract available.
-
Stem cells: Tumour stem cells generate vasculature.Nat Rev Cancer. 2011 Jan;11(1):4. doi: 10.1038/nrc2989. Nat Rev Cancer. 2011. PMID: 21218530 No abstract available.
-
Cancer: tumour stem cells generate vasculature.Nat Rev Neurosci. 2011 Jan;12(1):3. doi: 10.1038/nrn2971. Nat Rev Neurosci. 2011. PMID: 21218567 No abstract available.
References
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
- Actions
- Actions
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous
