Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jan;64(1):117-22.
doi: 10.1038/ja.2010.142. Epub 2010 Nov 24.

Involvement of common intermediate 3-hydroxy-L-kynurenine in chromophore biosynthesis of quinomycin family antibiotics

Affiliations
Free article

Involvement of common intermediate 3-hydroxy-L-kynurenine in chromophore biosynthesis of quinomycin family antibiotics

Yuki Hirose et al. J Antibiot (Tokyo). 2011 Jan.
Free article

Abstract

Quinomycin antibiotics, represented by echinomycin, are an important class of antitumor antibiotics. We have recently succeeded in identification of biosynthetic gene clusters of echinomycin and SW-163D, and have achieved heterologous production of echinomycin in Escherichia coli. In addition, we have engineered echinomycin non-ribosomal peptide synthetase to generate echinomycin derivatives. However, the biosynthetic pathways of intercalative chromophores quinoxaline-2-carboxylic acid (QXC) and 3-hydroxyquinaldic acid (HQA), which are important for biological activity, were not fully elucidated. Here, we report experiments involving incorporation of a putative advanced precursor, (2S, 3R)-[6'-(2)H]-3-hydroxy-L-kynurenine, and functional analysis of the enzymes Swb1 and Swb2 responsible for late-stage biosynthesis of HQA. On the basis of these experimental results, we propose biosynthetic pathways for both QXC and HQA through the common intermediate 3-hydroxy-L-kynurenine.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms