Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Aug 20;35(24):4941-52.
doi: 10.1364/AO.35.004941.

Tropospheric aerosol extinction coefficient profiles derived from scanning lidar measurements over Tsukuba, Japan, from 1990 to 1993

Tropospheric aerosol extinction coefficient profiles derived from scanning lidar measurements over Tsukuba, Japan, from 1990 to 1993

Y Sasano. Appl Opt. .

Abstract

Mie scattering lidar was used to observe aerosol extinction coefficient profiles in the troposphere over Tsukuba (140 E, 36 N), Japan, for three years from March 1990 to February 1993, and data obtained in fair weather were analyzed. The lidar measurements were made by a vertical scanning mode to generate profiles of extinction coefficients from the lidar level to a 12-km altitude. The extinction coefficients were derived from the lidar signals using a two-component (air molecule and aerosol) lidar equation, in which the ratio of aerosol extinction to backscattering was assumed to be constant. Seasonal average profiles were derived from individual profiles. Three-year average profiles were also calculated and modeled using mathematical expressions. The model profile assumed (1) a constant extinction ratio in the atmospheric boundary layer (ABL), (2) an exponentially decreasing extinction ratio above the ABL, and (3) a constant extinction ratio in the upper troposphere where the extinction ratio can be defined as the ratio of the aerosol extinction coefficient to the air molecule extinction coefficient. The extinction ratios both in the ABL and in the upper troposphere and the scale height that was used to express the exponential decrease were used as three unknown parameters. Seasonal variation of optical thickness that was obtained by integrating extinction coefficients with height was also investigated.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources