Modeling the spread of vector-borne diseases on bipartite networks
- PMID: 21103064
- PMCID: PMC2980486
- DOI: 10.1371/journal.pone.0013796
Modeling the spread of vector-borne diseases on bipartite networks
Abstract
Background: Vector-borne diseases for which transmission occurs exclusively between vectors and hosts can be modeled as spreading on a bipartite network.
Methodology/principal findings: In such models the spreading of the disease strongly depends on the degree distribution of the two classes of nodes. It is sufficient for one of the classes to have a scale-free degree distribution with a slow enough decay for the network to have asymptotically vanishing epidemic threshold. Data on the distribution of Ixodes ricinus ticks on mice and lizards from two independent studies are well described by a scale-free distribution compatible with an asymptotically vanishing epidemic threshold. The commonly used negative binomial, instead, cannot describe the right tail of the empirical distribution.
Conclusions/significance: The extreme aggregation of vectors on hosts, described by the power-law decay of the degree distribution, makes the epidemic threshold decrease with the size of the network and vanish asymptotically.
Conflict of interest statement
Figures











Similar articles
-
Pattern of tick aggregation on mice: larger than expected distribution tail enhances the spread of tick-borne pathogens.PLoS Comput Biol. 2014 Nov 13;10(11):e1003931. doi: 10.1371/journal.pcbi.1003931. eCollection 2014 Nov. PLoS Comput Biol. 2014. PMID: 25393293 Free PMC article.
-
Transmission dynamics of Borrelia lusitaniae and Borrelia afzelii among Ixodes ricinus, lizards, and mice in Tuscany, central Italy.Vector Borne Zoonotic Dis. 2011 Jan;11(1):21-8. doi: 10.1089/vbz.2008.0195. Epub 2010 May 19. Vector Borne Zoonotic Dis. 2011. PMID: 20482342
-
Hosts on which nymphal Ixodes ricinus most abundantly feed.Am J Trop Med Hyg. 1991 Jan;44(1):100-7. doi: 10.4269/ajtmh.1991.44.100. Am J Trop Med Hyg. 1991. PMID: 1996733
-
The tick Ixodes uriae (Acari: Ixodidae): Hosts, geographical distribution, and vector roles.Ticks Tick Borne Dis. 2015 Sep;6(6):843-68. doi: 10.1016/j.ttbdis.2015.07.014. Epub 2015 Jul 26. Ticks Tick Borne Dis. 2015. PMID: 26249749 Review.
-
[The biology of the Ixodes ricinus tick].Ther Umsch. 2005 Nov;62(11):707-12. doi: 10.1024/0040-5930.62.11.707. Ther Umsch. 2005. PMID: 16350531 Review. German.
Cited by
-
Complexity in the dengue spreading: A network analysis approach.PLoS One. 2023 Aug 7;18(8):e0289690. doi: 10.1371/journal.pone.0289690. eCollection 2023. PLoS One. 2023. PMID: 37549129 Free PMC article.
-
Dynamics of Zika virus outbreaks: an overview of mathematical modeling approaches.PeerJ. 2018 Mar 22;6:e4526. doi: 10.7717/peerj.4526. eCollection 2018. PeerJ. 2018. PMID: 29593941 Free PMC article.
-
Pattern of tick aggregation on mice: larger than expected distribution tail enhances the spread of tick-borne pathogens.PLoS Comput Biol. 2014 Nov 13;10(11):e1003931. doi: 10.1371/journal.pcbi.1003931. eCollection 2014 Nov. PLoS Comput Biol. 2014. PMID: 25393293 Free PMC article.
-
Host movement, transmission hot spots, and vector-borne disease dynamics on spatial networks.Infect Dis Model. 2022 Nov 4;7(4):742-760. doi: 10.1016/j.idm.2022.10.006. eCollection 2022 Dec. Infect Dis Model. 2022. PMID: 36439402 Free PMC article.
-
Pareto rules for malaria super-spreaders and super-spreading.Nat Commun. 2019 Sep 2;10(1):3939. doi: 10.1038/s41467-019-11861-y. Nat Commun. 2019. PMID: 31477710 Free PMC article.
References
-
- Barrat A, Barthélemy M, Vespignani A. Dynamical Processes on Complex Networks. Cambridge University Press; 2008.
-
- Pastor-Satorras R, Vespignani A. Epidemic spreading in scale-free networks. Physical Review Letters. 2001;86:3200–3. - PubMed
-
- Newman MEJ. Spread of epidemic disease on networks. Phys Rev E Stat Nonlin Soft Matter Phys. 2002;66:016128. - PubMed
-
- Gray JS, Kahl O, Lane RS, Stanek G, editors. Lyme Borreliosis: Biology, Epidemiology and Control. CABI Publishing; 2002.