Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jan 14;40(2):402-12.
doi: 10.1039/c0dt00820f. Epub 2010 Nov 23.

trans-Fe(II)(H)2(diphosphine)(diamine) complexes as alternative catalysts for the asymmetric hydrogenation of ketones? A DFT study

Affiliations

trans-Fe(II)(H)2(diphosphine)(diamine) complexes as alternative catalysts for the asymmetric hydrogenation of ketones? A DFT study

Hsin-Yi Tiffany Chen et al. Dalton Trans. .

Abstract

New insights into the structural, electronic and catalytic properties of Fe complexes are provided by a density functional theory study of model as well as real [Fe(II)(H)(2)(diphosphine)(diamine)] systems. Calculations conducted using several different functionals on the trans- and cis-isomers of [Fe(II)(H)(2)(S-xylbinap)(S,S-dpen)] complexes show that, as with the [Ru(II)(H)(2)(diphosphine)(diamine)] complexes, the trans-[Fe(II)(H)(2)(diphosphine)(diamine)] complex is the more stable isomer. Analysis of the spin states of the trans-[Fe(II)(H)(2)(diphosphine)(diamine)] complexes also shows that the singlet state is significantly more stable than the triplet and the quintet, as with the [Ru(II)(H)(2)(diphosphine)(diamine)] complexes. Calculations of the catalytic cycle for the hydrogenation of ketones using two model trans-[M(II)(H)(2)(PH(3))(2)(en)] catalysts, where M = Ru and Fe, show that the mechanism of reaction as well as the activation energies are very similar, in particular: (i) the ketone/alcohol hydrogen transfer reaction occurs through the metal-ligand bifunctional mechanism, with energy barriers of 3.4 and 3.2 kcal mol(-1) for the Ru- and Fe-catalysed reactions, respectively; (ii) the heterolytic splitting of H(2) across the M[partial double bond, bottom dashed]N bond for the regeneration of the Ru and Fe catalysts has an activation barrier of 13.8 and 12.8 kcal mol(-1), respectively, and is expected to be the rate determining step for both catalytic systems. The reduction of acetophenone by trans-[M(II)(H)(2)(S-xylbinap)(S,S-dpen)] complexes along two competitive reaction pathways, shows that the intermediates for the Fe catalytic system are similar to those responsible for the high enantioselectivity of (R)-alcohol in those proposed trans-[Ru(II)(H)(2)(S-xylbinap)(S,S-dpen)] catalysed acetophenone hydrogenation reaction. Thus the high enantiomeric excess in the hydrogenation of acetophenone could, in principle, be achieved using Fe catalysts.

PubMed Disclaimer

Similar articles

Publication types