Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Dec 15;44(24):9330-6.
doi: 10.1021/es1023724. Epub 2010 Nov 24.

Biodegradation of RDX and MNX with Rhodococcus sp. strain DN22: new insights into the degradation pathway

Affiliations

Biodegradation of RDX and MNX with Rhodococcus sp. strain DN22: new insights into the degradation pathway

Halasz Annamaria et al. Environ Sci Technol. .

Abstract

Previously we demonstrated that Rhodococcus sp. strain DN22 can degrade RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) aerobically via initial denitration. The present study describes the role of oxygen and water in the key denitration step leading to RDX decomposition using (18)O(2) and H(2)(18)O labeling experiments. We also investigated degradation of MNX (hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine) with DN22 under similar conditions. DN22 degraded RDX and MNX giving NO(2)(-), NO(3)(-), NDAB (4-nitro-diazabutanal), NH(3), N(2)O, and HCHO with NO(2)(-)/NO(3)(-) molar ratio reaching 17 and ca. 2, respectively. In the presence of (18)O(2), DN22 degraded RDX and produced NO(2)(-) with m/z at 46 Da that subsequently oxidized to NO(3)(-) containing one (18)O atom, but in the presence of H(2)(18)O we detected NO(3)(-) without (18)O. A control containing NO(2)(-), DN22, and (18)O(2) gave NO(3)(-) with one (18)O, confirming biotic oxidation of NO(2)(-) to NO(3)(-). Treatment of MNX with DN22 and (18)O(2) produced NO(3)(-) with two mass ions, one (66 Da) incorporating two (18)O atoms and another (64 Da) incorporating only one (18)O atom and we attributed their formation to bio-oxidation of the initially formed NO and NO(2)(-), respectively. In the presence of H(2)(18)O we detected NO(2)(-) with two different masses, one representing NO(2)(-) (46 Da) and another representing NO(2)(-) (48 Da) with the inclusion of one (18)O atom suggesting auto-oxidation of NO to NO(2)(-). Results indicated that denitration of either RDX or MNX and denitrosation of MNX by DN22 did not involve direct participation of either oxygen or water, but both played major roles in subsequent secondary chemical and biochemical reactions of NO and NO(2)(-).

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources