Critical roles of macrophages in the formation of intracranial aneurysm
- PMID: 21106959
- PMCID: PMC3021554
- DOI: 10.1161/STROKEAHA.110.590976
Critical roles of macrophages in the formation of intracranial aneurysm
Abstract
Background and purpose: abnormal vascular remodeling triggered by hemodynamic stresses and inflammation is believed to be a key process in the pathophysiology of intracranial aneurysms. Numerous studies have shown infiltration of inflammatory cells, especially macrophages, into intracranial aneurysmal walls in humans. Using a mouse model of intracranial aneurysms, we tested whether macrophages play critical roles in the formation of intracranial aneurysms.
Methods: intracranial aneurysms were induced in adult male mice using a combination of a single injection of elastase into the cerebrospinal fluid and angiotensin II-induced hypertension. Aneurysm formation was assessed 3 weeks later. Roles of macrophages were assessed using clodronate liposome-induced macrophage depletion. In addition, the incidence of aneurysms was assessed in mice lacking monocyte chemotactic protein-1 (CCL2) and mice lacking matrix metalloproteinase-12 (macrophage elastase).
Results: intracranial aneurysms in this model showed leukocyte infiltration into the aneurysmal wall, the majority of the leukocytes being macrophages. Mice with macrophage depletion had a significantly reduced incidence of aneurysms compared with control mice (1 of 10 versus 6 of 10; P<0.05). Similarly, there was a reduced incidence of aneurysms in mice lacking monocyte chemotactic protein-1 compared with the incidence of aneurysms in wild-type mice (2 of 10 versus 14 of 20, P<0.05). There was no difference in the incidence of aneurysms between mice lacking matrix metalloproteinase-12 and wild-type mice.
Conclusions: these data suggest critical roles of macrophages and proper macrophage functions in the formation of intracranial aneurysms in this model.
Conflict of interest statement
None
Figures
References
-
- Chyatte D, Bruno G, Desai S, Todor DR. Inflammation and intracranial aneurysms. Neurosurgery. 1999;45:1137–1146. - PubMed
-
- Kataoka K, Taneda M, Asai T, Kinoshita A, Ito M, Kuroda R. Structural fragility and inflammatory response of ruptured cerebral aneurysms. A comparative study between ruptured and unruptured cerebral aneurysms. Stroke. 1999;30:1396–1401. - PubMed
-
- Shi C, Awad IA, Jafari N, Lin S, Du P, Hage ZA, Shenkar R, Getch CC, Bredel M, Batjer HH, Bendok BR. Genomics of human intracranial aneurysm wall. Stroke. 2009;40:1252–1261. - PubMed
-
- Inoue K, Mineharu Y, Inoue S, Yamada S, Matsuda F, Nozaki K, Takenaka K, Hashimoto N, Koizumi A. Search on chromosome 17 centromere reveals tnfrsf13b as a susceptibility gene for intracranial aneurysm: A preliminary study. Circulation. 2006;113:2002–2010. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
