Fluid shear stress induces renal epithelial gene expression through polycystin-2-dependent trafficking of extracellular regulated kinase
- PMID: 21109758
- PMCID: PMC2997441
- DOI: 10.1159/000321640
Fluid shear stress induces renal epithelial gene expression through polycystin-2-dependent trafficking of extracellular regulated kinase
Abstract
Background: The cilium and cilial proteins have emerged as principal mechanosensors of renal epithelial cells responsible for translating mechanical forces into intracellular signals. Polycystin-2 (PC-2), a cilial protein, regulates flow/shear-induced changes in intracellular Ca(2+) ([Ca(2+)](i)) and recently has been implicated in the regulation of mitogen-activated protein (MAP) kinases. We hypothesize that fluid shear stress (FSS) activates PC-2 which regulates MAP kinase and, in turn, induces MAP kinase-dependent gene expression, specifically, monocyte chemoattractant protein-1 (MCP-1).
Methods: To test this, PC-2 expression was constitutively reduced in a murine inner medullary collecting duct (IMCD3) cell line, and the expression of FSS-induced MCP-1 expression and MAP kinase signaling compared between the parental (PC-2-expressing) and PC-2-deficient IMCD3 cells.
Results: FSS induces MAP kinase signaling and downstream MCP-1 mRNA expression in wild-type IMCD3 cells, while inhibitors of MAP kinase prevented the FSS-induced MCP-1 mRNA response. In contradistinction, FSS did not induce MCP-1 mRNA expression in PC-2-deficient cells, but did increase activation of the upstream MAP kinases. Wild-type cells exposed to FSS augmented the nuclear abundance of activated MAP kinase while PC-2-deficient cells did not.
Conclusions: PC-2 regulates FSS-induced MAP kinase trafficking into the nucleus of CD cells.
Copyright © 2010 S. Karger AG, Basel.
Figures









References
-
- Li YS, Haga JH, Chien S. Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomech. 2005;38:1949–1971. - PubMed
-
- Satlin LM, Carattino MD, Liu W, Kleyman TR. Regulation of cation transport in the distal nephron by mechanical forces. Am J Physiol Renal Physiol. 2006;291:F923–F931. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous