Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Aug;22(8):784-90.
doi: 10.1016/j.jnutbio.2010.06.009. Epub 2010 Nov 26.

Omega-3 fatty acids attenuate dendritic cell function via NF-κB independent of PPARγ

Affiliations

Omega-3 fatty acids attenuate dendritic cell function via NF-κB independent of PPARγ

Eve Draper et al. J Nutr Biochem. 2011 Aug.

Abstract

Long-chain n-3 polyunsaturated fatty acids (n-3 PUFA) have been shown to modulate the immune response and have therapeutic effects in inflammatory disorders. PUFA are also peroxisome proliferators-activator receptor-gamma (PPARγ) ligands; a family of ligand-activated transcription factors, which when activated antagonise the pro-inflammatory capability of nuclear factor κB (NF-κB). PPARγ plays a role in dendritic cell (DC) maturation and n-3 PUFA have been shown to affect DC maturation by decreasing activation of NF-κB. While n-3 PUFA can function as PPAR ligands, it is not known whether the NF-κB-mediated immunomodulatory properties of n-3 PUFA are PPARγ-dependent. In this study we examined whether the immunomodulatory effects of n-3 PUFA on DC activation were mediated through activation of PPARγ. Treatment of murine bone marrow derived DCs with docosahexaenoic acid (DHA; 25 μM) and eicosapentaenoic acid (EPA; 25 μM) attenuated LPS-induced DC maturation. This was characterised by suppression of IL-12 production and expression of CD40, CD80, CD86 and MHC II and enhanced production of IL-10 and expression of IL-10R. This was coincident with enhanced PPARγ expression, suppressed NF-κB activity and increased the physical interaction and cellular colocalization between NF-κB with PPARγ. To understand the functional implication of the physical association of PPARγ with NF-κB, we determined whether the specific PPARγ inhibitor, GW9662 could abolish the anti-inflammatory effect of n-3 PUFA Inhibiting PPARγ did not impede the NF-κB-mediated anti-inflammatory cytokine profile induced by EPA and DHA alone. Thus n-3 PUFA activate PPARγ and interact with NF-κB in DC. However, the anti-inflammatory effects of EPA and DHA on DCs are independent of PPARγ.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources