Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Mar;32(7):1950-6.
doi: 10.1016/j.biomaterials.2010.11.006. Epub 2010 Nov 26.

A scalable controlled-release device for transscleral drug delivery to the retina

Affiliations

A scalable controlled-release device for transscleral drug delivery to the retina

Takeaki Kawashima et al. Biomaterials. 2011 Mar.

Abstract

A transscleral drug-delivery device, designed for the administration of protein-type drugs, that consists of a drug reservoir covered with a controlled-release membrane was manufactured and tested. The controlled-release membrane is made of photopolymerized polyethylene glycol dimethacrylate (PEGDM) that contains interconnected collagen microparticles (COLs), which are the routes for drug permeation. The results showed that the release of 40-kDa FITC-dextran (FD40) was dependent on the COL concentration, which indicated that FD40 travelled through the membrane-embedded COLs. Additionally, the sustained-release drug formulations, FD40-loaded COLs and FD40-loaded COLs pelletized with PEGDM, fine-tuned the release of FD40. Capsules filled with COLs that contained recombinant human brain-derived neurotrophic factor (rhBDNF) released bioactive rhBDNF in a manner dependent on the membrane COL concentration, as was found for FD40 release. When capsules were sutured onto sclerae of rabbit eyes, FD40 was found to spread to the retinal pigment epithelium. Implantation of the device was easy, and it did not damage the eye tissues. In conclusion, our capsule is easily modified to accommodate different release rates for protein-type drugs by altering the membrane COL composition and/or drug formulation and can be implanted and removed with minor surgery. The device thus has great potential as a conduit for continuous, controlled drug release.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources