Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Dec 15;213(Pt 24):4163-73.
doi: 10.1242/jeb.046474.

Presynaptic Ca2+ stores contribute to odor-induced responses in Drosophila olfactory receptor neurons

Affiliations

Presynaptic Ca2+ stores contribute to odor-induced responses in Drosophila olfactory receptor neurons

Meena Sriti Murmu et al. J Exp Biol. .

Abstract

In both vertebrates and invertebrates, olfactory receptor neurons (ORNs) respond to several odors. They also adapt to stimulus variations, and this is considered to be a simple form of non-associative learning and neuronal plasticity. Different mechanisms have been described to support neuronal and/or synaptic plasticity. For example in vertebrates, presynaptic Ca(2+) stores relying on either the ryanodine receptor (RyR) or the inositol (1,4,5)-trisphosphate receptor (InsP(3)R) have been reported to participate in synaptic transmission, in hippocampal pyramidal neurons, and in basket cell-Purkinje cell synapses. However, in invertebrates, especially in sensory neurons such as ORNs, similar mechanisms have not yet been detected. In this study, using Drosophila and taking advantage of an in vivo bioluminescence Ca(2+)-imaging technique in combination with genetic and pharmacological tools, first we show that the GFP-aequorin Ca(2+) sensor is sensitive enough to detect odor-induced responses of various durations. Second, we show that for a relatively long (5 s) odor application, odor-induced Ca(2+) responses occurring in the axon terminals of ORNs involve intracellular Ca(2+) stores. This response is decreased by specifically targeting InsP(3)R or RyR by RNAi, or application of the specific blockers thapsigargin or ryanodine, suggesting that Ca(2+) stores serve to amplify the presynaptic signal. Furthermore, we show that disrupting the intracellular Ca(2+) stores in the ORNs has functional consequences since InsP(3)R- or RyR-RNAi expressing flies were defective in olfactory behavior. Altogether, our results indicate that for long odor applications in Drosophila, the olfactory response depends on intracellular Ca(2+) stores within the axon terminals of the ORNs.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources