Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jan 7;64(2):261-298.
doi: 10.1016/j.tet.2007.10.039.

(+)-Discodermolide: Total Synthesis, Construction of Novel Analogues, and Biological Evaluation

Affiliations

(+)-Discodermolide: Total Synthesis, Construction of Novel Analogues, and Biological Evaluation

Amos B Smith et al. Tetrahedron. .
No abstract available

PubMed Disclaimer

Figures

Figure 1
Figure 1
Natural and non-natural microtubule-stabilizing agents.
Figure 2
Figure 2
Retrosynthetic analyses of (+)-discodermolide.
Figure 3
Figure 3
(+)-Discodermolide, (−)-discodermolide, and other Schreiber analogues.
Figure 4
Figure 4
Schreiber analogues of (+)-discodermolide.
Figure 5
Figure 5
Harbor Branch semi-synthetic analogues.
Figure 6
Figure 6
Harbor Branch – semi-synthetic analogues.
Figure 7
Figure 7
Harbor Branch – naturally occurring discodermolide congeners.
Figure 8
Figure 8
Paterson analogues of (+)-discodermolide.
Figure 9
Figure 9
Novartis analogues of (+)-discodermolide.
Figure 10
Figure 10
Novartis analogues of (+)-discodermolide.
Figure 11
Figure 11
Novartis/Harbor Branch synthetic analogues.
Figure 12
Figure 12
Curran/Day simplified analogues.
Figure 13
Figure 13
Smith and Smith/Kosan lactone-replacement analogues of (+)-discodermolide.
Figure 14
Figure 14
Smith aryl lactone-replacement analogues.
Figure 15
Figure 15
Smith coumarin-derived lactone replacement analogues
Figure 16
Figure 16
Smith 14-normethyl lactone-replacement analogues.
Figure 17
Figure 17
Smith diene-replacement analogues of (+)-14-normethyldiscodermolide.
Figure 18
Figure 18
Smith carbamate-substitution analogues of (+)-discodermolide.
Figure 19
Figure 19
Compounds evaluated as in vivo tumor suppression agents.
Scheme 1
Scheme 1
The Schreiber synthesis of fragments 5, 7, and 10.
Scheme 2
Scheme 2
The Schreiber total synthesis of discodermolide.
Scheme 3
Scheme 3
The Smith first-generation synthesis of fragments 16, 18, and 22.
Scheme 4
Scheme 4
The Smith first-generation total synthesis of discodermolide.
Scheme 5
Scheme 5
The Myles synthesis of fragments 30, 32, and 34.
Scheme 6
Scheme 6
The Myles total synthesis of discodermolide.
Scheme 7
Scheme 7
The Marshall synthesis of fragments (+)-44, (+)-48, and (−)-51.
Scheme 8
Scheme 8
The Marshall total synthesis of (+)-discodermolide.
Scheme 9
Scheme 9
The Evans synthesis of fragments (−)-58, (+)-62, and (+)-65.
Scheme 10
Scheme 10
The Evans total synthesis of (+)-discodermolide.
Scheme 11
Scheme 11
Smith gram-scale discodermolide retrosynthesis.
Scheme 12
Scheme 12
The Smith gram-scale synthesis of (−)-14 and (−)-72.
Scheme 13
Scheme 13
The Smith gram-scale total synthesis of (+)-discodermolide.
Scheme 14
Scheme 14
Third-generation improvements to the Smith gram-scale synthesis
Scheme 15
Scheme 15
Smith fourth-generation synthesis of (+)-discodermolide.
Scheme 16
Scheme 16
The Paterson first-generation synthesis of (+)-95, (+)-100, and (−)-103.
Scheme 17
Scheme 17
The Paterson first-generation total synthesis of (+)-discodermolide.
Scheme 18
Scheme 18
The Paterson second-generation synthesis of (+)-95, (+)-112, and (−)-114.
Scheme 19
Scheme 19
The Paterson second-generation total synthesis of (+)-discodermolide.
Scheme 20
Scheme 20
The Paterson third-generation synthesis of (+)-discodermolide.
Scheme 21
Scheme 21
The Novartis sixty-gram total synthesis of (+)-discodermolide.
Scheme 22
Scheme 22
The Panek synthesis of (+)-125, (−)-127, and (−)-129.
Scheme 23
Scheme 23
The Panek total synthesis of (+)-discodermolide.

References

    1. Mann J. Nat. Rev. Cancer. 2002;2:143–148. - PubMed
    1. Schiff PB, Fant J, Horwitz SB. Nature. 1979;277:665–667. - PubMed
    2. Schiff PB, Horwitz SB. Proc. Natl. Acad. Sci. U. S. A. 1980;77:1561–1565. - PMC - PubMed
    3. Parness J, Horwitz SB. J. Cell Biol. 1981;91:479–487. - PMC - PubMed
    4. Horwitz SB, Parness J, Schiff PB, Manfredi JJ. Cold Spring Harbor Symp. Quant. Biol. 1982;46:219–226. - PubMed
    1. Gerth K, Bedorf N, Hofle G, Irschik H, Reichenbach H. J. Antibiot. 1996;49:560–563. - PubMed
    1. Bollag DM, McQueney PA, Zhu J, Hensens O, Koupal L, Liesch J, Goetz M, Lazarides E, Woods CM. Cancer Res. 1995;55:2325–2333. - PubMed
    2. Su D-S, Balog A, Meng D, Bertinato P, Danishefsky SJ, Zheng Y-H, Chou T-C, He L, Horwitz SB. Angew. Chem., Int. Engl. 1997;36:2093–2096.
    3. Chou T-C, Zhang X-G, Balog A, Su D-S, Meng D, Savin K, Bertino JR, Danishefsky SJ. Proc. Natl. Acad. Sci. U. S. A. 1998;95:9642–9647. - PMC - PubMed
    1. Rivkin A, Yoshimura F, Gabarda AE, Cho YS, Chou T-C, Dong H, Danishefsky SJ. J. Am. Chem. Soc. 2004;126:10913–10922. - PubMed
    2. Rivkin A, Chou T-C, Danishefsky SJ. Angew. Chem., Int. Ed. 2005;44:2838–2850. - PubMed

LinkOut - more resources