Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Jul-Aug;8(4):943-58.
doi: 10.1109/TCBB.2010.117.

A survey on methods for modeling and analyzing integrated biological networks

Affiliations
Review

A survey on methods for modeling and analyzing integrated biological networks

Nuno Tenazinha et al. IEEE/ACM Trans Comput Biol Bioinform. 2011 Jul-Aug.

Abstract

Understanding how cellular systems build up integrated responses to their dynamically changing environment is one of the open questions in Systems Biology. Despite their intertwinement, signaling networks, gene regulation and metabolism have been frequently modeled independently in the context of well-defined subsystems. For this purpose, several mathematical formalisms have been developed according to the features of each particular network under study. Nonetheless, a deeper understanding of cellular behavior requires the integration of these various systems into a model capable of capturing how they operate as an ensemble. With the recent advances in the "omics" technologies, more data is becoming available and, thus, recent efforts have been driven toward this integrated modeling approach. We herein review and discuss methodological frameworks currently available for modeling and analyzing integrated biological networks, in particular metabolic, gene regulatory and signaling networks. These include network-based methods and Chemical Organization Theory, Flux-Balance Analysis and its extensions, logical discrete modeling, Petri Nets, traditional kinetic modeling, Hybrid Systems and stochastic models. Comparisons are also established regarding data requirements, scalability with network size and computational burden. The methods are illustrated with successful case studies in large-scale genome models and in particular subsystems of various organisms.

PubMed Disclaimer

Similar articles

Cited by

Publication types