Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Feb;79(2):633-44.
doi: 10.1002/prot.22911.

Structural and functional analysis of substrate recognition by the 250s loop in amylomaltase from Thermus brockianus

Affiliations

Structural and functional analysis of substrate recognition by the 250s loop in amylomaltase from Thermus brockianus

Jong-Hyun Jung et al. Proteins. 2011 Feb.

Abstract

Amylomaltase, or 4-α-glucanotransferase (EC 2.4.1.25), is involved in glycogen and maltooligosaccharide metabolism in microorganisms, catalyzing both the hydrolysis and transfer of an α-1,4-oligosacchraride to other sugar molecules. In this study, we determined the crystal structure of amylomaltase from Thermus brockianus at a resolution of 2.3 Å and conducted a biochemical study to understand the detailed mechanism for its activity. Careful comparison with previous amylomaltase structures showed a pattern of conformational flexibility in the 250s loop with higher B-factor. Amylomaltase from T. brockianus exhibited a high transglycosylation factor for glucose and a lower value for maltose. Mutation of Gln256 resulted in increased K(m) for maltotriose and a sharp decrease of the transglycosylation factor for maltose, suggesting the involvement of Gln 256 in substrate binding between subsites +1 and +2. Mutation of Phe251 resulted in significantly lower glucose production but increased maltose production from maltopentose substrates, showing an altered substrate-binding affinity. The mutational data suggest the conformational flexibility of the loop may be involved in substrate binding in the GH77 family. Here, we present an action model of the 250s loop providing the molecular basis for the involvement of residues Phe251, Gln256, and Trp258 in the hydrolysis and transglycosylation activities in amylomaltase.

PubMed Disclaimer

Publication types

Associated data

LinkOut - more resources