Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Feb 15;27(4):1440-7.
doi: 10.1021/la104130n. Epub 2010 Nov 30.

Single-molecule force-clamp spectroscopy: dwell time analysis and practical considerations

Affiliations

Single-molecule force-clamp spectroscopy: dwell time analysis and practical considerations

Yi Cao et al. Langmuir. .

Abstract

Single-molecule force-clamp spectroscopy has become a powerful tool for studying protein folding/unfolding, bond rupture, and enzymatic reactions. Different methods have been developed to analyze force-clamp spectroscopy data on polyproteins to obtain kinetic parameters characterizing the mechanical unfolding of proteins, which are often modeled as a two-state process (a Poisson process). However, because of the finite number of domains in polyproteins, the statistical analysis of the force-clamp spectroscopy data is different from that of a classical Poisson process, and the equivalency of different analysis methods remains to be proven. In this article, we show that these methods are equivalent and lead to accurate measurements of the unfolding rate constant. We also demonstrate that distinct from the constant-pulling-velocity experiments, in which the unfolding rate extracted from the data is dependent on the number of protein domains in the polyproteins (the N effect), force-clamp experiments do not show any N effect. Using a simulated data set, we also highlighted important practical considerations that one needs to take into account when using the single-molecule force-clamp spectroscopy technique to characterize the unfolding energy landscape of proteins.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources