Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Dec 1;304(21):2389-96.
doi: 10.1001/jama.2010.1706.

Mitochondrial dysfunction in autism

Affiliations

Mitochondrial dysfunction in autism

Cecilia Giulivi et al. JAMA. .

Abstract

Context: Impaired mitochondrial function may influence processes highly dependent on energy, such as neurodevelopment, and contribute to autism. No studies have evaluated mitochondrial dysfunction and mitochondrial DNA (mtDNA) abnormalities in a well-defined population of children with autism.

Objective: To evaluate mitochondrial defects in children with autism.

Design, setting, and patients: Observational study using data collected from patients aged 2 to 5 years who were a subset of children participating in the Childhood Autism Risk From Genes and Environment study in California, which is a population-based, case-control investigation with confirmed autism cases and age-matched, genetically unrelated, typically developing controls, that was launched in 2003 and is still ongoing. Mitochondrial dysfunction and mtDNA abnormalities were evaluated in lymphocytes from 10 children with autism and 10 controls.

Main outcome measures: Oxidative phosphorylation capacity, mtDNA copy number and deletions, mitochondrial rate of hydrogen peroxide production, and plasma lactate and pyruvate.

Results: The reduced nicotinamide adenine dinucleotide (NADH) oxidase activity (normalized to citrate synthase activity) in lymphocytic mitochondria from children with autism was significantly lower compared with controls (mean, 4.4 [95% confidence interval {CI}, 2.8-6.0] vs 12 [95% CI, 8-16], respectively; P = .001). The majority of children with autism (6 of 10) had complex I activity below control range values. Higher plasma pyruvate levels were found in children with autism compared with controls (0.23 mM [95% CI, 0.15-0.31 mM] vs 0.08 mM [95% CI, 0.04-0.12 mM], respectively; P = .02). Eight of 10 cases had higher pyruvate levels but only 2 cases had higher lactate levels compared with controls. These results were consistent with the lower pyruvate dehydrogenase activity observed in children with autism compared with controls (1.0 [95% CI, 0.6-1.4] nmol × [min × mg protein](-1) vs 2.3 [95% CI, 1.7-2.9] nmol × [min × mg protein](-1), respectively; P = .01). Children with autism had higher mitochondrial rates of hydrogen peroxide production compared with controls (0.34 [95% CI, 0.26-0.42] nmol × [min × mg of protein](-1) vs 0.16 [95% CI, 0.12-0.20] nmol × [min × mg protein](-1) by complex III; P = .02). Mitochondrial DNA overreplication was found in 5 cases (mean ratio of mtDNA to nuclear DNA: 239 [95% CI, 217-239] vs 179 [95% CI, 165-193] in controls; P = 10(-4)). Deletions at the segment of cytochrome b were observed in 2 cases (ratio of cytochrome b to ND1: 0.80 [95% CI, 0.68-0.92] vs 0.99 [95% CI, 0.93-1.05] for controls; P = .01).

Conclusion: In this exploratory study, children with autism were more likely to have mitochondrial dysfunction, mtDNA overreplication, and mtDNA deletions than typically developing children.

PubMed Disclaimer

References

    1. National Institute of Neurological Disorders and Stroke Autism fact sheet. 2010 Oct 8; http://www.ninds.nih.gov/disorders/autism/detail_autism.htm. Accessed.
    1. Filipek PA, Juranek J, Smith M, et al. Mitochondrial dysfunction in autistic patients with 15q inverted duplication. Ann Neurol. 2003;53(6):801–804. - PubMed
    1. Fillano JJ, Goldenthal MJ, Rhodes CH, Marín-García J. Mitochondrial dysfunction in patients with hypotonia, epilepsy, autism, and developmental delay: HEADD syndrome. J Child Neurol. 2002;17(6):435–439. - PubMed
    1. Oliveira G, Diogo L, Grazina M, et al. Mitochondrial dysfunction in autism spectrum disorders: a population-based study. Dev Med Child Neurol. 2005;47(3):185–189. - PubMed
    1. Filipek PA, Juranek J, Nguyen MT, et al. Relative carnitine deficiency in autism. J Autism Dev Disord. 2004;34(6):615–623. - PubMed

Publication types