Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Case Reports
. 2010 Sep;51(9):986-92.

Correlation between fluorodeoxyglucose positron emission tomography and magnetic resonance imaging findings of non-suppurative meningoencephalitis in 5 dogs

Affiliations
Case Reports

Correlation between fluorodeoxyglucose positron emission tomography and magnetic resonance imaging findings of non-suppurative meningoencephalitis in 5 dogs

Byeong-Teck Kang et al. Can Vet J. 2010 Sep.

Abstract

This study characterized the [(18)F]2-deoxy-2-fluoro-D-glucose positron emission tomography (FDG-PET) findings of encephalitis in dogs and assessed the role of FDG-PET in the diagnosis of meningoencephalitis. The medical records, magnetic resonance (MR), and FDG-PET images of 3 dogs with necrotizing meningoencephalitis (NME), 1 dog with granulomatous meningoencephalitis (GME), and 1 dog with meningoencephalitis of unknown etiology (MUE) were reviewed. On the FDG-PET, glucose hypometabolism was identified in the dog with NME, whereas hypermetabolism was noted in the dog with GME. The T2-weighted images (WI) and fluid attenuated inversion recovery (FLAIR) images were characterized by hyperintensity, whereas the signal intensity of the lesions on the T1-WI images was variable. The metabolic changes on the brain FDG-PET corresponded well to the hyper- and hypointense lesions seen on the MR imaging. This type of tomography (FDG-PET) aided in the differentiation of different types of inflammatory meningoencephalitis when the metabolic data was combined with clinical and MR findings.

Corrélation entre les constatations d’une tomographie par émission de positrons de fluorodésoxyglucose et de l’imagerie par résonance magnétique d’une méningoencéphalite non suppurée chez 5 chiens. Cette étude a caractérisé les constatations d’encéphalite par tomographie par émission de positrons de [18F]2-deoxy-2-fluoro-D-glucose (FDG-TEP) chez des chiens et a évalué le rôle de la FDG-TEP dans le diagnostic d’une méningoencéphalite. Les dossiers médicaux, la résonance magnétique (RM) et les images de FDG-TEP de 3 chiens avec une méningoencéphalite nécrosante (MEN), de 1 chien avec une ménigoencéphalite granulomateuse (MEG) et de 1 chien avec une méningoencéphalite d’étiologie inconnue (MEI) ont été examinés. Au FDG-TEP, l’hypométabolisme de glucose a été identifié chez le chien atteint de MEN, tandis que l’hypermétabolisme a été signalé chez le chien avec MEG. Les images pondérées T2 (IP) et les images FLAIR (fluid attenuated inversion recovery) ont été caractérisées par l’hyperintensité, tandis que l’intensité du signal des lésions sur les images T1-IP était variable. Les changements métaboliques du cerveau FDG-TEP correspondaient bien à des lésions hyperintenses et hypointenses observées sur l’imagerie RM. Ce type de tomographie (FDG-PET) a facilité la différenciation des différents types de méningoencéphalite inflammatoire lorsque les données métaboliques ont été combinées avec les résultats cliniques et la RM.

(Traduit par Isabelle Vallières)

PubMed Disclaimer

Figures

Figure 1
Figure 1
Imaging characteristics and necropsy findings in a Yorkshire terrier with NME (dog 1). Multiple lesions are present in the left parietal and left and right temporal lobes. The lesions are hyperintense on T2-WI (A), hypointense on T1-WI (B), and iso- to hypointense on FLAIR images (C). In the internal capsules bilaterally (*) and the dorsal portion of the parietal lobe (arrows), the lesions are hyperintense on FLAIR images (C). (D) FDG-PET image depicts marked hypometabolism, which is shown with the bluish to greenish color. The distribution of hypometabolism corresponds to the abnormal regions noted on the MRI. On the MR and FDG-PET images, both lateral ventricles and third ventricle are enlarged. (E) In the cerebral cortex, diffuse severe atrophy was noted at necropsy. (F) Histopathologically, in the cerebral cortex, inflammatory lesions with cavitation and macrophage infiltration (arrows) are observed. Hematoxylin and eosin (H & E) × 200.
Figure 2
Figure 2
Image characteristics and necropsy findings of a Maltese with NME (dog 2). In the dorsal aspect of the left cerebral cortex and subcortical white matter (thick arrows), piriform lobe (*), and thalamus (thin arrows), multifocal lesions are hyperintense on T2-WI (A) and FLAIR (B) images. (C) These lesions are isointense on T1-WI. (D) On the equivalent regions compared to the MR images, the FDG-PET image depicts marked hypometabolism, which is shown with yellowish to greenish color (*). In all images, both lateral ventricles and the mesencephalic aqueduct are severely dilated. (E) At necropsy, the atrophy of the left cerebral cortex and subcortical white matter (thin arrows), and the dilation of lateral ventricles were identified. (F) Histopathologically, in the cerebral cortex and meninges, malacic foci and mononuclear inflammatory changes are observed (H & E, ×100).
Figure 3
Figure 3
Image characteristics of a monglish dog with MUE (dog 4). In the left cerebral cortex and subcortical white matter (thick arrows), lesions are hyperintense on T2-WI (A) and FLAIR (B) images. (C) These lesions are hypointense on T1-WI (*). (D) FDG-PET image depicts diffuse cerebral hypermetabolism, shown with a strong reddish color (*). This high metabolism is also shown in the ventral portion of the occipital lobe (thin arrow).
Figure 4
Figure 4
Image characteristics and necropsy findings of a miniature pinscher with GME (dog 5). In the left myelencephalon (arrows), a focal lesion is characterized by hyperintense on T2-WI (A) and FLAIR (B) images. On the right side, a smaller but similar lesion is observed (*). (C) These lesions are hypointense on T1-WI (*). In all MR images, the fourth ventricle is moderately dilated. (D) On the equivalent regions compared to the MR images, the FDG-PET images depict hypermetabolism, shown with a strong reddish color (*). (E) At necropsy, on the dorsolateral portion of the left myelencephalon (arrows), granulomatous lesions were found. (F) Histopathologically, in the myelencephalon, perivascular (arrows) and parenchymal infiltration of macrophages, lymphocytes and plasma cells is present (H & E, ×200).

References

    1. Menaut P, Landart J, Behr S, et al. Treatment of 11 dogs with meningoencephalomyelitis of unknown origin with a combination of prednisolone and cytosine arabinoside. Vet Rec. 2008;162:241–245. - PubMed
    1. Schatzberg SJ. An update on granulomatous meningoencephalitis, necrotizing meningoencephalitis and necrotizing leukoencephalitis. 23rd ACVIM Proceedings. 2005:351–353. - PubMed
    1. Cherubini GB, Platt SR, Anderson TJ, et al. Characteristics of magnetic resonance images of granulomatous meningoencephalomyelitis in 11 dogs. Vet Rec. 2006;159:110–115. - PubMed
    1. Kitagawa M, Okada M, Kanayama K, et al. A canine case of necrotizing meningoencephalitis for long-term observation: Clinical and MRI findings. J Vet Med Sci. 2007;69:1195–1198. - PubMed
    1. Kuwamura M, Adachi T, Yamate J, et al. Necrotising encephalitis in the Yorkshire terrier: A case report and literature review. J Small Anim Pract. 2002;43:459–463. - PubMed

Publication types

LinkOut - more resources