Evidence that water can reduce the kinetic stability of protein-hydrophobic ligand interactions
- PMID: 21121620
- DOI: 10.1021/ja106731e
Evidence that water can reduce the kinetic stability of protein-hydrophobic ligand interactions
Abstract
The first quantitative comparison of the thermal dissociation rate constants measured for protein-ligand complexes in their hydrated and dehydrated states is described. Rate constants, measured using surface plasmon resonance spectroscopy, are reported for the dissociation of the 1:1 complexes of bovine β-lactoglobulin (Lg) with the fatty acids (FA), palmitic acid (PA), and stearic acid (SA), in aqueous solution at pH 8 and at temperatures ranging from 5 to 45 °C. The rate constants are compared to values determined from time-resolved blackbody infrared radiative dissociation measurements for the gaseous deprotonated (Lg+FA)(n-) ions, where n = 6 and 7, at temperatures ranging from 25 to 66 °C. Notably, the hydrated (Lg+PA) complex is kinetically less stable than the corresponding gas phase (Lg+PA)(n-) ions at all temperatures investigated; the hydrated (Lg+SA) complex is kinetically less stable than the gaseous (Lg+SA)(n-) ions at temperatures <45 °C. The greater kinetic stability of the gaseous (Lg+FA)(n-) ions originates from significantly larger, by 11-12 kcal mol(-1), E(a) values. It is proposed that the differences in the dissociation E(a) values measured in solution and the gas phase reflect the differential hydration of the reactant and the dissociative transition state.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources