Gene expression profiling in whole blood identifies distinct biological pathways associated with obesity
- PMID: 21122113
- PMCID: PMC3014865
- DOI: 10.1186/1755-8794-3-56
Gene expression profiling in whole blood identifies distinct biological pathways associated with obesity
Abstract
Background: Obesity is reaching epidemic proportions and represents a significant risk factor for cardiovascular disease, diabetes, and cancer.
Methods: To explore the relationship between increased body mass and gene expression in blood, we conducted whole-genome expression profiling of whole blood from seventeen obese and seventeen well matched lean subjects. Gene expression data was analyzed at the individual gene and pathway level and a preliminary assessment of the predictive value of blood gene expression profiles in obesity was carried out.
Results: Principal components analysis of whole-blood gene expression data from obese and lean subjects led to efficient separation of the two cohorts. Pathway analysis by gene-set enrichment demonstrated increased transcript levels for genes belonging to the "ribosome", "apoptosis" and "oxidative phosphorylation" pathways in the obese cohort, consistent with an altered metabolic state including increased protein synthesis, enhanced cell death from proinflammatory or lipotoxic stimuli, and increased energy demands. A subset of pathway-specific genes acted as efficient predictors of obese or lean class membership when used in Naive Bayes or logistic regression based classifiers.
Conclusion: This study provides a comprehensive characterization of the whole blood transcriptome in obesity and demonstrates that the investigation of gene expression profiles from whole blood can inform and illustrate the biological processes related to regulation of body mass. Additionally, the ability of pathway-related gene expression to predict class membership suggests the feasibility of a similar approach for identifying clinically useful blood-based predictors of weight loss success following dietary or surgical interventions.
Figures



References
-
- Pausova Z, Gossard F, Gaudet D, Tremblay J, Kotchen TA, Cowley AW, Hamet P. Heritability estimates of obesity measures in siblings with and without hypertension. Hypertension. 2001;38(1):41–47. - PubMed
-
- Wardle J, Carnell S, Haworth CM, Plomin R. Evidence for a strong genetic influence on childhood adiposity despite the force of the obesogenic environment. Am J Clin Nutr. 2008;87(2):398–404. - PubMed
-
- Thorleifsson G, Walters GB, Gudbjartsson DF, Steinthorsdottir V, Sulem P, Helgadottir A, Styrkarsdottir U, Gretarsdottir S, Thorlacius S, Jonsdottir I. et al.Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat Genet. 2009;41(1):18–24. doi: 10.1038/ng.274. - DOI - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases