Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Dec 2:8:127.
doi: 10.1186/1479-5876-8-127.

Prevalence of the GJB2 IVS1+1G >A mutation in Chinese hearing loss patients with monoallelic pathogenic mutation in the coding region of GJB2

Affiliations

Prevalence of the GJB2 IVS1+1G >A mutation in Chinese hearing loss patients with monoallelic pathogenic mutation in the coding region of GJB2

Yongyi Yuan et al. J Transl Med. .

Abstract

Background: Mutations in the GJB2 gene are the most common cause of nonsyndromic recessive hearing loss in China. In about 6% of Chinese patients with severe to profound sensorineural hearing impairment, only monoallelic GJB2 mutations known to be either recessive or of unclear pathogenicity have been identified. This paper reports the prevalence of the GJB2 IVS1+1G>A mutation in a population of Chinese hearing loss patients with monoallelic pathogenic mutation in the coding region of GJB2.

Methods: Two hundred and twelve patients, screened from 7133 cases of nonsyndromic hearing loss in China, with monoallelic mutation (mainly frameshift and nonsense mutation) in the coding region of GJB2 were examined for the GJB2 IVS1+1G>A mutation and mutations in the promoter region of this gene. Two hundred and sixty-two nonsyndromic hearing loss patients without GJB2 mutation and 105 controls with normal hearing were also tested for the GJB2 IVS1+1G>A mutation by sequencing.

Results: Four patients with monoallelic mutation in the coding region of GJB2 were found carrying the GJB2 IVS1+1G>A mutation on the opposite allele. One patient with the GJB2 c.235delC mutation carried one variant, -3175 C>T, in exon 1 of GJB2. Neither GJB2 IVS1+1G>A mutation nor any variant in exon 1 of GJB2 was found in the 262 nonsyndromic hearing loss patients without GJB2 mutation or in the 105 normal hearing controls.

Conclusion: Testing for the GJB2 IVS 1+1 G to A mutation explained deafness in 1.89% of Chinese GJB2 monoallelic patients, and it should be included in routine testing of patients with GJB2 monoallelic pathogenic mutation.

PubMed Disclaimer

References

    1. Cohen MM, Gorlin RJ. In: Hereditary hearing loss and its snydromes. Gorlin RJ, Toriello HV, Cohen MM, editor. Oxford University Press, Oxford; 1995. Epidemiology, etiology and genetic patterns; pp. 9–21.
    1. Hereditary Hearing Loss. http://hereditaryhearingloss.org
    1. Estivill X, Fortina P, Surrey S, Rabionet R, Melchionda S, D'Agruma L, Mansfield E, Rappaport E, Govea N, Mila M, Zelante L, Gasparini P. Connexin-26 mutations in sporadic and inherited sensorineural deafness. Lancet. 1998;351:394–398. doi: 10.1016/S0140-6736(97)11124-2. - DOI - PubMed
    1. Lench N, Houseman M, Newton V, Van Camp G, Mueller R. Connexin-26 mutations in sporadic non-syndromal sensorineural deafness. Lancet. 1998. p. 351:415. - PubMed
    1. Morell RJ, Kim HJ, Hood LJ, Goforth L, Friderici K, Fisher R, Van Camp G, Berlin CI, Oddoux C, Ostrer H, Keats B, Friedman TB. Mutations in the connexin 26 gene (GJB2) among Ashkenazi Jews with nonsyndromic recessive deafness. N Engl J Med. 1998;339:1500–1505. doi: 10.1056/NEJM199811193392103. - DOI - PubMed

Publication types

MeSH terms

LinkOut - more resources