Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Dec 3;11(1):169.
doi: 10.1186/1465-9921-11-169.

New approaches in the diagnosis and treatment of latent tuberculosis infection

Affiliations
Review

New approaches in the diagnosis and treatment of latent tuberculosis infection

Suhail Ahmad. Respir Res. .

Abstract

With nearly 9 million new active disease cases and 2 million deaths occurring worldwide every year, tuberculosis continues to remain a major public health problem. Exposure to Mycobacterium tuberculosis leads to active disease in only ~10% people. An effective immune response in remaining individuals stops M. tuberculosis multiplication. However, the pathogen is completely eradicated in ~10% people while others only succeed in containment of infection as some bacilli escape killing and remain in non-replicating (dormant) state (latent tuberculosis infection) in old lesions. The dormant bacilli can resuscitate and cause active disease if a disruption of immune response occurs. Nearly one-third of world population is latently infected with M. tuberculosis and 5%-10% of infected individuals will develop active disease during their life time. However, the risk of developing active disease is greatly increased (5%-15% every year and ~50% over lifetime) by human immunodeficiency virus-coinfection. While active transmission is a significant contributor of active disease cases in high tuberculosis burden countries, most active disease cases in low tuberculosis incidence countries arise from this pool of latently infected individuals. A positive tuberculin skin test or a more recent and specific interferon-gamma release assay in a person without overt signs of active disease indicates latent tuberculosis infection. Two commercial interferon-gamma release assays, QFT-G-IT and T-SPOT.TB have been developed. The standard treatment for latent tuberculosis infection is daily therapy with isoniazid for nine months. Other options include therapy with rifampicin for 4 months or isoniazid + rifampicin for 3 months or rifampicin + pyrazinamide for 2 months or isoniazid + rifapentine for 3 months. Identification of latently infected individuals and their treatment has lowered tuberculosis incidence in rich, advanced countries. Similar approaches also hold great promise for other countries with low-intermediate rates of tuberculosis incidence.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Natural progression of events and outcome in an immunocompetent individual following exposure of human subjects (contacts of TB patients) to droplet nuclei containing M. tuberculosis expectorated by a source case of sputum smear-positive pulmonary TB. Every year, ~50 million people worldwide are infected with M. tuberculosis. Complete elimination of tubercle bacilli is achieved in ~10% individuals only while in ~90% of infected individuals, bacterial growth is stopped but some bacilli survive and persist leading to latent M. tuberculosis infection (LTBI). The waning of dormant bacilli in persons with LTBI can be accelerated by therapy with isoniazid for 9 months (denoted by *). The vaccines currently in clinical trials are designed to prevent or delay the reactivation of latent infection in persons with LTBI (denoted by **).

References

    1. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998;393:537–544. doi: 10.1038/31159. - DOI - PubMed
    1. Garnier T, Eiglmeier K, Camus JC, Medina N, Mansoor H, Pryor M, Duthoy S, Grondin S, Lacroix C, Monsempe C, Simon S, Harris B, Atkin R, Doggett J, Mayes R, Keating L, Wheeler PR, Parkhill J, Barrell BG, Cole ST, Gordon SV, Hewinson RG. The complete genome sequence of Mycobacterium bovis. Proc Natl Acad Sci USA. 2003;100:7877–7882. doi: 10.1073/pnas.1130426100. - DOI - PMC - PubMed
    1. World Health Organization. WHO/HTM/TB/2009.411. Geneva, Switzerland: WHO; 2009. Global tuberculosis control: surveillance, planning and financing. WHO report 2009.
    1. World Health Organization. WHO/HTM/TB/2009.426. Geneva, Switzerland: WHO; 2009. Global tuberculosis control: a short update to the 2009 report.
    1. World Health Organization. WHO/HTM/TB/2010.3. Geneva, Switzerland: WHO; 2010. Multidrug and extensively drug-resistant TB (M/XDR-TB): 2010 global report on surveillance and response.

Publication types

MeSH terms

Substances

LinkOut - more resources