Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 May 16;1034(2):213-8.
doi: 10.1016/0304-4165(90)90079-c.

The enzymatic basis for the metabolism and inhibitory effects of valproic acid: dehydrogenation of valproyl-CoA by 2-methyl-branched-chain acyl-CoA dehydrogenase

Affiliations
Free article

The enzymatic basis for the metabolism and inhibitory effects of valproic acid: dehydrogenation of valproyl-CoA by 2-methyl-branched-chain acyl-CoA dehydrogenase

M Ito et al. Biochim Biophys Acta. .
Free article

Abstract

Five distinct acyl-CoA dehydrogenases are currently known. These are short, medium, long and 2-methyl-branched-chain acyl-CoA dehydrogenases, and isovaleryl-CoA dehydrogenase. We tested these five acyl-CoA dehydrogenases for their ability to dehydrogenate valproyl-CoA using pure enzyme preparations isolated from rat liver mitochondria. The activities of the pure human short-chain, medium-chain and isovaleryl enzymes purified from post-mortem livers, and a long-chain acyl-CoA dehydrogenase preparation partially purified from placental mitochondria, were also tested. Valproyl-CoA was dehydrogenated at a significant rate (0.167 mumol/min per mg protein) only by rat 2-methyl-branched-chain acyl-CoA dehydrogenase. Human 2-methyl-branched-chain acyl-CoA dehydrogenase has not been purified; therefore, it could not be tested. Since four other human acyl-CoA dehydrogenases did not dehydrogenate isobutyryl-CoA, 2-methylbutyryl-CoA (obligatory intermediates from valine and isoleucine, respectively) nor valproyl-CoA, it is reasonable to assume that valproyl-CoA is dehydrogenated by 2-methyl-branch-chain acyl-CoA dehydrogenase in man as well. We identified 2-propyl-2-pentenoyl-CoA as the reaction product from valproyl-CoA by mass spectral analysis of the acyl moiety. Valproyl-CoA, at 0.3 mM, moderately inhibited human acyl-CoA dehydrogenases with the exception of the long-chain enzyme. 5 mM free valproic acid inhibited the activities of various acyl-CoA dehydrogenases only very weakly.

PubMed Disclaimer

Publication types

LinkOut - more resources