Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2011 Jan 15;107(2):321-4.
doi: 10.1016/j.amjcard.2010.09.019. Epub 2010 Dec 2.

Natural history of concentric left ventricular geometry in community-dwelling older adults without heart failure during seven years of follow-up

Affiliations
Comparative Study

Natural history of concentric left ventricular geometry in community-dwelling older adults without heart failure during seven years of follow-up

Ravi V Desai et al. Am J Cardiol. .

Abstract

Presence of concentric left ventricular (LV) geometry has important pathophysiologic and prognostic implications. However, little is known about its natural history in older adults. Of the 5,795 community-dwelling adults ≥65 years of age in the Cardiovascular Health Study, 1,871 without baseline heart failure had data on baseline and 7-year echocardiograms. Of these 343 (18%) had baseline concentric LV geometry (concentric remodeling 83%, concentric LV hypertrophy [LVH] 17%) and are the focus of the present study. LV geometry at year 7 was categorized into 4 groups based on LVH (LV mass indexed for height >51 g/m²·⁷) and relative wall thickness (RWT): eccentric hypertrophy (RWT ≤0.42 with LVH), concentric hypertrophy (RWT >0.42 with LVH), concentric remodeling (RWT >0.42 without LVH), and normal (RWT ≤0.42 without LVH). At year 7, LV geometry normalized in 57%, remained unchanged in 35%, and transitioned to eccentric hypertrophy in 7% of participants. Incident eccentric hypertrophy occurred in 4% and 25% of those with baseline concentric remodeling and concentric hypertrophy, respectively, and was associated with increased LV end-diastolic volume and decreased LV ejection fraction at year 7. Previous myocardial infarction and baseline above-median LV mass (>39 g/m²·⁷) and RWT (>0.46) had significant unadjusted associations with incident eccentric LVH; however, only LV mass >39 g/m²·⁷ (odds ratio 17.52, 95% confidence interval 3.91 to 78.47, p <0.001) and previous myocardial infarction (odds ratio 4.73, 95% confidence interval 1.16 to 19.32, p = 0.031) had significant independent associations. In conclusion, in community-dwelling older adults with concentric LV geometry, transition to eccentric hypertrophy was uncommon but structurally maladaptive.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest Disclosures: None

References

    1. Lavie CJ, Milani RV, Ventura HO, Messerli FH. Left ventricular geometry and mortality in patients >70 years of age with normal ejection fraction. Am J Cardiol. 2006;98:1396–1399. - PubMed
    1. Gardin JM, McClelland R, Kitzman D, Lima JA, Bommer W, Klopfenstein HS, Wong ND, Smith VE, Gottdiener J. M-mode echocardiographic predictors of six- to seven-year incidence of coronary heart disease, stroke, congestive heart failure, and mortality in an elderly cohort (the Cardiovascular Health Study) Am J Cardiol. 2001;87:1051–1057. - PubMed
    1. Gaasch WH, Delorey DE, St John Sutton MG, Zile MR. Patterns of structural and functional remodeling of the left ventricle in chronic heart failure. Am J Cardiol. 2008;102:459–462. - PubMed
    1. Drazner MH. The transition from hypertrophy to failure: how certain are we? Circulation. 2005;112:936–938. - PubMed
    1. Zile MR, Lewinter MM. Left ventricular end-diastolic volume is normal in patients with heart failure and a normal ejection fraction: a renewed consensus in diastolic heart failure. J Am Coll Cardiol. 2007;49:982–985. - PubMed

Publication types