Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Apr;7(4):1807-16.
doi: 10.1016/j.actbio.2010.11.041. Epub 2010 Dec 2.

Melt-derived bioactive glass scaffolds produced by a gel-cast foaming technique

Affiliations
Free article

Melt-derived bioactive glass scaffolds produced by a gel-cast foaming technique

Zoe Y Wu et al. Acta Biomater. 2011 Apr.
Free article

Abstract

Porous melt-derived bioactive glass scaffolds with interconnected pore networks suitable for bone regeneration were produced without the glass crystallizing. ICIE 16 (49.46% SiO(2), 36.27% CaO, 6.6% Na(2)O, 1.07% P(2)O(5) and 6.6% K(2)O, in mol.%) was used as it is a composition designed not to crystallize during sintering. Glass powder was made into porous scaffolds by using the gel-cast foaming technique. All variables in the process were investigated systematically to devise an optimal process. Interconnect size was quantified using mercury porosimetry and X-ray microtomography (μCT). The reagents, their relative quantities and thermal processing protocols were all critical to obtain a successful scaffold. Particularly important were particle size (a modal size of 8 μm was optimal); water and catalyst content; initiator vitality and content; as well as the thermal processing protocol. Once an optimal process was chosen, the scaffolds were tested in simulated body fluid (SBF) solution. Amorphous calcium phosphate formed in 8h and crystallized hydroxycarbonate apatite (HCA) formed in 3 days. The compressive strength was approximately 2 MPa for a mean interconnect size of 140 μm between the pores with a mean diameter of 379 μm, which is thought to be a suitable porous network for vascularized bone regeneration. This material has the potential to bond to bone more rapidly and stimulate more bone growth than current porous artificial bone grafts.

PubMed Disclaimer

Similar articles

Cited by

Publication types