Detection of EGFR mutations in plasma DNA from lung cancer patients by mass spectrometry genotyping is predictive of tumor EGFR status and response to EGFR inhibitors
- PMID: 21130517
- PMCID: PMC3282180
- DOI: 10.1016/j.lungcan.2010.10.014
Detection of EGFR mutations in plasma DNA from lung cancer patients by mass spectrometry genotyping is predictive of tumor EGFR status and response to EGFR inhibitors
Abstract
Aims: EGFR mutations now guide the clinical use of EGFR-targeted therapy in lung cancer. However, standard EGFR mutation analysis requires a minimum amount of tumor tissue, which may not be available in certain situations. In this study, we combined a mass spectrometry genotyping assay (Sequenom) with a mutant-enriched PCR (ME-PCR) to detect EGFR mutations in free plasma DNA from patients with lung cancer.
Method: DNAs were extracted from 31 plasma samples from 31 patients and analyzed by both methods for EGFR Exon 19 deletion and EGFR L858R mutation. Results in plasma DNA samples were compared with EGFR mutation status obtained in tumor DNA (18/31 EGFR mutant). The relationship of EGFR mutation status in tumor and/or plasma samples to overall survival was assessed.
Results: The EGFR mutation status in plasma DNA was identical to the primary tumor in 61% of patients (19/31). By mass spectrometry genotyping, the plasma samples contained mutant DNA corresponding to 5/14 EGFR Exon 19 deletions and 3/4 EGFR L858R mutations previously diagnosed in the matched tumors. Two samples were positive in plasma DNA but negative in primary tumor tissue. Results were similar for samples studied by ME-PCR. For patients treated with erlotinib, overall survival was correlated with the presence of EGFR mutation in plasma and/or tumor tissue (p=0.002), with the two patients positive only in plasma DNA showing responses and favorable outcomes.
Conclusion: The detection of EGFR mutations in plasma DNA samples by mass spectrometry genotyping and ME-PCR is feasible. A positive EGFR result in plasma DNA has a high predictive value for tumor EGFR status and for favorable clinical course on EGFR-targeted therapy and could therefore be useful in guiding clinical decisions in patients with insufficient or unavailable tumor specimens.
Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Conflict of interest statement
Conflict of Interest statement: None declared
Figures
References
-
- Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, Sunpaweravong P, Han B, Margono B, Ichinose Y, Nishiwaki Y, Ohe Y, Yang JJ, Chewaskulyong B, Jiang H, Duffield EL, Watkins CL, Armour AA, Fukuoka M. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361:947–957. - PubMed
-
- Sozzi G, Conte D, Leon M, Ciricione R, Roz L, Ratcliffe C, Roz E, Cirenei N, Bellomi M, Pelosi G, Pierotti MA, Pastorino U. Quantification of free circulating DNA as a diagnostic marker in lung cancer. J Clin Oncol. 2003;21:3902–3908. - PubMed
-
- Bai H, Mao L, Wang HS, Zhao J, Yang L, An TT, Wang X, Duan CJ, Wu NM, Guo ZQ, Liu YX, Liu HN, Wang YY, Wang J. Epidermal growth factor receptor mutations in plasma DNA samples predict tumor response in Chinese patients with stages IIIB to IV non-small-cell lung cancer. J Clin Oncol. 2009;27:2653–2659. - PubMed
-
- Yung TK, Chan KC, Mok TS, Tong J, To KF, Lo YM. Single-molecule detection of epidermal growth factor receptor mutations in plasma by microfluidics digital PCR in non-small cell lung cancer patients. Clin Cancer Res. 2009;15:2076–2084. - PubMed
-
- Mack PC, Holland WS, Burich RA, Sangha R, Solis LJ, Li Y, Beckett LA, Lara PN, Jr, Davies AM, Gandara DR. EGFR mutations detected in plasma are associated with patient outcomes in erlotinib plus docetaxel-treated non-small cell lung cancer. J Thorac Oncol. 2009;4:1466–1472. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
Miscellaneous
