Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Jun;10(6):1769-78.
doi: 10.1523/JNEUROSCI.10-06-01769.1990.

Physiological differences between strong and weak frog neuromuscular junctions: a study involving tetanic and posttetanic potentiation

Affiliations

Physiological differences between strong and weak frog neuromuscular junctions: a study involving tetanic and posttetanic potentiation

P A Pawson et al. J Neurosci. 1990 Jun.

Abstract

This paper describes the extent of release and terminal variability among normal frog sartorius neuromuscular junctions and seeks physiological correlates for these differences. Terminal length varied over approximately a 10-fold range, quantal content and release per unit terminal length ("release efficacy") over much larger ranges. For purposes of comparison of different junctions, release efficacy in a Ringer's containing 0.25 mM Ca2+ was determined in all cases. In a Ringer's containing 0.1 mM Ca2+, tetanic stimulation causes a buildup of evoked release and of miniature endplate potential (mEPP) frequency. The mEPP frequency at the end of the tetanus is proportional to the evoked release level. Following the tetanus, the mEPP frequency declines in a multiexponential fashion, with the 2 longest decay phases, representing augmentation and posttetanic potentiation (PTP), both having time constants that are positively linearly correlated with the synaptic release efficacy. Longer or higher-frequency tetanic stimulation resulted in a longer time course of decay of mEPP frequency. In a Ca2(+)-free/EGTA Ringer's, tetanic stimulation causes no evoked release, but does lead to an increased mEPP frequency, presumably due to a buildup of free Ca2+ displaced from internal stores by the Na+ influx. Following the tetanus, the mEPP frequency declines to resting level with a time constant that is essentially the same for all junctions, regardless of their release efficacy in Ca2(+)-containing Ringer's. These findings indicate that stronger terminals have a greater influx of Ca2+ per unit length during action potential invasion, but that in the absence of external Ca2+, tetanic stimulation results in comparable release of Ca2+ from internal stores in all terminals and comparable accumulation of Ca2+ in some large compartment, the subsequent emptying of which determines the time course of PTP.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources