Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Dec;42(6):449-55.
doi: 10.1007/s10863-010-9320-9.

Mitochondrial dysfunction and oxidative stress: a contributing link to acquired epilepsy?

Affiliations
Review

Mitochondrial dysfunction and oxidative stress: a contributing link to acquired epilepsy?

Simon Waldbaum et al. J Bioenerg Biomembr. 2010 Dec.

Abstract

Mitochondrial dysfunction and oxidative stress contribute to several neurologic disorders and have recently been implicated in acquired epilepsies such as temporal lobe epilepsy (TLE). Acquired epilepsy is typically initiated by a brain injury followed by a "latent period" whereby molecular, biochemical and other cellular alterations occur in the brain leading to chronic epilepsy. Mitochondrial dysfunction and oxidative stress are emerging as factors that not only occur acutely as a result of precipitating injuries such as status epilepticus (SE), but may also contribute to epileptogenesis and chronic epilepsy. Mitochondria are the primary site of reactive oxygen species (ROS) making them uniquely vulnerable to oxidative damage that may affect neuronal excitability and seizure susceptibility. This mini-review provides an overview of evidence suggesting the role of mitochondrial dysfunction and oxidative stress as acute consequences of injuries that are known to incite chronic epilepsy and their involvement in the chronic stages of acquired epilepsy.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Time-course of mitochondrial oxidative stress and subsequent damage during epileptogenesis. Note the initial and persistent decrease in mitochondrial and tissue redox status (CoASH/CoASSG, GSH/GSSG) throughout epileptogenesis which may serve an ongoing link to chronic epilepsy

References

    1. Barros DO, Xavier SM, Barbosa CO, Silva RF, Freitas RL, Maia FD, Oliveira AA, Freitas RM, Takahashi RN. Effects of the vitamin E in catalase activities in hippocampus after status epilepticus induced by pilocarpine in Wistar rats. Neurosci Lett. 2007;416:227–230. - PubMed
    1. Bellissimo MI, Amado D, Abdalla DS, Ferreira EC, Cavalheiro EA, Naffah-Mazzacoratti MG. Superoxide dismutase, glutathione peroxidase activities and the hydroperoxide concentration are modified in the hippocampus of epileptic rats. Epilepsy Res. 2001;46:121–128. - PubMed
    1. Bhargava A, Khan S, Panwar H, Pathak N, Punde RP, Varshney S, Mishra PK. Occult hepatitis B virus infection with low viremia induces DNA damage, apoptosis and oxidative stress in peripheral blood lymphocytes. Virus Res. 2010;153:143–150. - PubMed
    1. Bough KJ, Wetherington J, Hassel B, Pare JF, Gawryluk JW, Greene JG, Shaw R, Smith Y, Geiger JD, Dingledine RJ. Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann Neurol. 2006;60:223–235. - PubMed
    1. Bruce AJ, Baudry M. Oxygen free radicals in rat limbic structures after kainate-induced seizures. Free Radic Biol Med. 1995;18:993–1002. - PubMed

Substances