Vitamin E-stabilized UHMWPE for total joint implants: a review
- PMID: 21132413
- PMCID: PMC3126938
- DOI: 10.1007/s11999-010-1717-6
Vitamin E-stabilized UHMWPE for total joint implants: a review
Abstract
Background: Osteolysis due to wear of UHMWPE limits the longevity of joint arthroplasty. Oxidative degradation of UHMWPE gamma-sterilized in air increases its wear while decreasing mechanical strength. Vitamin E stabilization of UHMWPE was proposed to improve oxidation resistance while maintaining wear resistance and fatigue strength.
Questions/purposes: We reviewed the preclinical research on the development and testing of vitamin E-stabilized UHMWPE with the following questions in mind: (1) What is the rationale behind protecting irradiated UHMWPE against oxidation by vitamin E? (2) What are the effects of vitamin E on the microstructure, tribologic, and mechanical properties of irradiated UHMWPE? (3) Is vitamin E expected to affect the periprosthetic tissue negatively?
Methods: We performed searches in PubMed, Scopus, and Science Citation Index to review the development of vitamin E-stabilized UHMWPEs and their feasibility as clinical implants.
Results: The rationale for using vitamin E in UHMWPE was twofold: improving oxidation resistance of irradiated UHMWPEs and fatigue strength of irradiated UHMWPEs with an alternative to postirradiation melting. Vitamin E-stabilized UHMWPE showed oxidation resistance superior to that of irradiated UHMWPEs with detectable residual free radicals. It showed equivalent wear and improved mechanical strength compared to irradiated and melted UHMWPE. The biocompatibility was confirmed by simulating elution, if any, of the antioxidant from implants.
Conclusions: Vitamin E-stabilized UHMWPE offers a joint arthroplasty technology with good mechanical, wear, and oxidation properties.
Clinical relevance: Vitamin E-stabilized, irradiated UHMWPEs were recently introduced clinically. The rationale behind using vitamin E and in vitro tests comparing its performance to older materials are of great interest for improving longevity of joint arthroplasties.
Figures


References
-
- Al-Malaika S. Autoxidation. In: Scott G, ed. Atmospheric Oxidation and Antioxidants. Volume I. Amsterdam, The Netherlands: Elsevier Science Publishers BV; 1993:45–82.
-
- Assink R, Celina M, Dunbar T, Alam T, Clough R, Gillen K. Analysis of hydroperoxides in solid polyethylene by MAS 13C NMR and EPR. Macromolecules. 2000;33:4023–4029. doi: 10.1021/ma991970d. - DOI
-
- Standard Specification for Ultra-high Molecular Weight Polyethylene Powder Blended With alpha-Tocopherol (Vitamin E) and Fabricated Forms for Surgical Implant Applications. West Conshohocken, PA: ASTM International; 2007.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical