Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jan 3;12(1):125-31.
doi: 10.1002/cbic.201000466.

Click chemistry for rapid labeling and ligation of RNA

Affiliations

Click chemistry for rapid labeling and ligation of RNA

Eduardo Paredes et al. Chembiochem. .

Abstract

The copper(I)-promoted azide-alkyne cycloaddition reaction (click chemistry) is shown to be compatible with RNA (with free 2'-hydroxyl groups) in spite of the intrinsic lability of RNA. RNA degradation is minimized through stabilization of the Cu(I) in aqueous buffer with acetonitrile as cosolvent and no other ligand; this suggests the general possibility of "ligandless" click chemistry. With the viability of click chemistry validated on synthetic RNA bearing "click"-reactive alkynes, the scope of the reaction is extended to in-vitro-transcribed or, indeed, any RNA, as a click-reactive azide is incorporated enzymatically. Once clickable groups are installed on RNA, they can be rapidly click labeled or conjugated together in click ligations, which may be either templated or nontemplated. In click ligations the resultant unnatural triazole-linked RNA backbone is not detrimental to RNA function, thus suggesting a broad applicability of click chemistry in RNA biological studies.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources