Insulin resistance and circadian rhythm of cardiac autonomic modulation
- PMID: 21134267
- PMCID: PMC3017516
- DOI: 10.1186/1475-2840-9-85
Insulin resistance and circadian rhythm of cardiac autonomic modulation
Abstract
Background: Insulin resistance (IR) has been associated with cardiovascular diseases (CVD). Heart rate variability (HRV), an index of cardiac autonomic modulation (CAM), is also associated with CVD mortality and CVD morbidity. Currently, there are limited data about the impairment of IR on the circadian pattern of CAM. Therefore, we conducted this investigation to exam the association between IR and the circadian oscillations of CAM in a community-dwelling middle-aged sample.
Method: Homeostasis models of IR (HOMA-IR), insulin, and glucose were used to assess IR. CAM was measured by HRV analysis from a 24-hour electrocardiogram. Two stage modeling was used in the analysis. In stage one, for each individual we fit a cosine periodic model based on the 48 segments of HRV data. We obtained three individual-level cosine parameters that quantity the circadian pattern: mean (M), measures the overall average of a HRV index; amplitude (Â), measures the amplitude of the oscillation of a HRV index; and acrophase time (θ), measures the timing of the highest oscillation. At the second stage, we used a random-effects-meta-analysis to summarize the effects of IR variables on the three circadian parameters of HRV indices obtained in stage one of the analysis.
Results: In persons without type diabetes, the multivariate adjusted β (SE) of log HOMA-IR and M variable for HRV were -0.251 (0.093), -0.245 (0.078), -0.19 (0.06), -4.89 (1.76), -3.35 (1.31), and 2.14 (0.995), for log HF, log LF, log VLF, SDNN, RMSSD and HR, respectively (all P < 0.05). None of the IR variables were significantly associated with  or θ of the HRV indices. However, in eight type 2 diabetics, the magnitude of effect due to higher HOMA-IR on M, Â, and θ are much larger.
Conclusion: Elevated IR, among non-diabetics significantly impairs the overall mean levels of CAM. However, the  or θ of CAM were not significantly affected by IR, suggesting that the circadian mechanisms of CAM are not impaired. However, among persons with type 2 diabetes, a group clinically has more severe form of IR, the adverse effects of increased IR on all three HRV circadian parameters are much larger.
Figures

References
-
- Pyorala K, Savolainen E, Kaukola S, Haapakoski J. Plasma insulin as coronary heart disease risk factor: relationship to other risk factors and predictive value during 9 1/2-year follow-up of the Helsinki Policemen Study population. Acta Med Scand Suppl. 1985;701:38–52. - PubMed
-
- Casassus P, Fontbonne A, Thibult N, Ducimetiere P, Richard JL, Claude JR, Warnet JM, Rosselin G, Eschwege E. Upper-body fat distribution: a hyperinsulinemia-independent predictor of coronary heart disease mortality. The Paris Prospective Study. Arterioscler Thromb. 1992;12:1387–1392. - PubMed
-
- Bonora E, Targher G, Alberiche M, Bonadonna RC, Saggiani F, Zenere MB, Monauni T, Muggeo M. Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity: studies in subjects with various degrees of glucose tolerance and insulin sensitivity. Diabetes Care. 2000;23:57–63. doi: 10.2337/diacare.23.1.57. - DOI - PubMed
-
- Bonora E, Formentini G, Calcaterra F, Lombardi S, Marini F, Zenari L, Saggiani F, Poli M, Perbellini S, Raffaelli A, Cacciatori V, Santi L, Targher G, Bonadonna R, Muggeo M. HOMA-estimated insulin resistance is an independent predictor of cardiovascular disease in type 2 diabetic subjects: prospective data from the Verona Diabetes Complications Study. Diabetes Care. 2002;25:1135–1141. doi: 10.2337/diacare.25.7.1135. - DOI - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous