Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jan 14;22(2):025701.
doi: 10.1088/0957-4484/22/2/025701. Epub 2010 Dec 7.

Low-temperature phase and morphology transformations in noble metal nanocatalysts

Affiliations

Low-temperature phase and morphology transformations in noble metal nanocatalysts

O Malis et al. Nanotechnology. .

Abstract

In situ real-time x-ray diffraction was used to study temperature-induced structural changes of 1-5 nm Au, Pt, and AuPt nanocatalysts supported on silicon substrates. Synchrotron-based x-ray diffraction indicates that the as-synthesized Au and Au(64)Pt(36) nanoparticles have a non-crystalline structure, while the Pt nanoparticles have the expected cubic structure. The nanoparticles undergo dramatic structural changes at temperatures as low as 120 °C. During low-temperature annealing, the Au and AuPt nanoparticles first melt and then immediately coalesce to form 4-5 nm crystalline structures. The Pt nanoparticles also aggregate but with limited intermediate melting. The detailed mechanisms of nucleation and growth, though, are quite different for the three types of nanoparticles. Most interestingly, solidification of high-density AuPt nanoparticles involves an unusual transient morphological transformation that affects only the surface of the particles. AuPt nanoparticles on silicon undergo partial phase segregation only upon annealing at extremely high temperatures (800 °C).

PubMed Disclaimer

Publication types