Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Feb;102(3):2751-7.
doi: 10.1016/j.biortech.2010.11.048. Epub 2010 Dec 10.

Saccharomyces cerevisiae as anodic biocatalyst for power generation in biofuel cell: influence of redox condition and substrate load

Affiliations

Saccharomyces cerevisiae as anodic biocatalyst for power generation in biofuel cell: influence of redox condition and substrate load

S Veer Raghavulu et al. Bioresour Technol. 2011 Feb.

Abstract

Bio (microbial) fuel cell (microbial fuel cell) with Saccharomyces cerevisiae as anodic biocatalyst was evaluated in terms of power generation and substrate degradation at three redox conditions (5.0, 6.0 and 7.0). Fuel cell was operated in single chamber (open-air cathode) configuration without mediators using non-catalyzed graphite as electrodes. The performance was further studied with increasing loading rate (OLRI, 0.91 kg COD/m(3)-day; OLRII, 1.43 kg COD/m(3)). Higher current density was observed at pH6.0 [160.36 mA/m(2) (OLRI); 282.83 mA/m(2) (OLRII)] than pH5.0 (137.24 mA/m(2)) and pH 7.0 (129.25 mA/m(2)). Bio-electrochemical behavior of fuel cell was evaluated using cyclic voltammetry which showed the presence of redox mediators (NADH/NAD(+); FADH/FAD(+)). Higher electron discharge was observed at pH6.0, suggesting higher proton shuttling through the involvement of different redox mediators. The application of yeast based fuel cell can be extended to treat high strength wastewaters with simultaneous power generation.

PubMed Disclaimer

Publication types

LinkOut - more resources