Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Mar;50(3):451-9.
doi: 10.1016/j.yjmcc.2010.11.021. Epub 2010 Dec 14.

Structural evidence for perinuclear calcium microdomains in cardiac myocytes

Affiliations

Structural evidence for perinuclear calcium microdomains in cardiac myocytes

Matias Escobar et al. J Mol Cell Cardiol. 2011 Mar.

Abstract

At each heartbeat, cardiac myocytes are activated by a cytoplasmic Ca(2+) transient in great part due to Ca(2+) release from the sarcoplasmic reticulum via ryanodine receptors (RyRs) clustered within calcium release units (peripheral couplings/dyads). A Ca(2+) transient also occurs in the nucleoplasm, following the cytoplasmic transient with some delay. Under conditions where the InsP3 production is stimulated, these Ca(2+) transients are regulated actively, presumably by an additional release of Ca(2+) via InsP3 receptors (InsP3Rs). This raises the question whether InsP3Rs are appropriately located for this effect and whether sources of InsP3 and Ca(2+) are available for their activation. We have defined the structural basis for InsP3R activity at the nucleus, using immunolabeling for confocal microscopy and freeze-drying/shadowing, T tubule "staining" and thin sectioning for electron microscopy. By these means we establish the presence of InsP3R at the outer nuclear envelope and show a close spatial relationship between the nuclear envelope, T tubules (a likely source of InsP3) and dyads (the known source of Ca(2+)). The frequency, distribution and distance from the nucleus of T tubules and dyads appropriately establish local perinuclear Ca(2+) microdomains in cardiac myocytes.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources