Dicer insufficiency and microRNA-155 overexpression in lupus regulatory T cells: an apparent paradox in the setting of an inflammatory milieu
- PMID: 21149603
- PMCID: PMC3038632
- DOI: 10.4049/jimmunol.1002218
Dicer insufficiency and microRNA-155 overexpression in lupus regulatory T cells: an apparent paradox in the setting of an inflammatory milieu
Abstract
Systemic lupus erythematosus is a chronic autoimmune disease characterized by loss of tolerance to self-Ags and activation of autoreactive T cells. Regulatory T (Treg) cells play a critical role in controlling the activation of autoreactive T cells. In this study, we investigated mechanisms of potential Treg cell defects in systemic lupus erythematosus using MRL-Fas(lpr/lpr) (MRL/lpr) and MRL-Fas(+/+) mouse models. We found a significant increase in CD4(+)CD25(+)Foxp3(+) Treg cells, albeit with an altered phenotype (CD62L(-)CD69(+)) and with a reduced suppressive capacity, in the lymphoid organs of MRL strains compared with non-autoimmune C3H/HeOuj mice. A search for mechanisms underlying the altered Treg cell phenotype in MRL/lpr mice led us to find a profound reduction in Dicer expression and an altered microRNA (miRNA, miR) profile in MRL/lpr Treg cells. Despite having a reduced level of Dicer, MRL/lpr Treg cells exhibited a significant overexpression of several miRNAs, including let-7a, let-7f, miR-16, miR-23a, miR-23b, miR-27a, and miR-155. Using computational approaches, we identified one of the upregulated miRNAs, miR-155, that can target CD62L and may thus confer the altered Treg cell phenotype in MRL/lpr mice. In fact, the induced overexpression of miR-155 in otherwise normal (C3H/HeOuj) Treg cells reduced their CD62L expression, which mimics the altered Treg cell phenotype in MRL/lpr mice. These data suggest a role of Dicer and miR-155 in regulating Treg cell phenotype. Furthermore, simultaneous appearance of Dicer insufficiency and miR-155 overexpression in diseased mice suggests a Dicer-independent alternative mechanism of miRNA regulation under inflammatory conditions.
Figures
References
-
- Singh RR, Ebling FM, Albuquerque DA, Saxena V, Kumar V, Giannini EH, Marion TN, Finkelman FD, Hahn BH. Induction of autoantibody production is limited in nonautoimmune mice. J Immunol. 2002;169:587–594. - PubMed
-
- Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003;299:1057–1061. - PubMed
-
- Brunkow M, Jeffery E, Hjerrild K, Paeper B, Clark L, Yasayko S, Wilkinson J, Galas D, Ziegler S, Ramsdell F. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet. 2001;27:68–73. - PubMed
-
- Singh RR, Dubey S. Autoantigens and defects in immune tolerance in lupus. In: Wallace a. B. H. H. D.J., editor. Dubois’ Lupus Erythematosus. Lippincott, Williams and Wilkins; Philadelphia: 2007. pp. 370–406.
-
- Scalapino KJ, Tang Q, Bluestone JA, Bonyhadi ML, Daikh DI. Suppression of disease in New Zealand Black/New Zealand White lupus-prone mice by adoptive transfer of ex vivo expanded regulatory T cells. J Immunol. 2006;177:1451–1459. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials
Miscellaneous
