Targeting the midgut secreted PpChit1 reduces Leishmania major development in its natural vector, the sand fly Phlebotomus papatasi
- PMID: 21152058
- PMCID: PMC2994919
- DOI: 10.1371/journal.pntd.0000901
Targeting the midgut secreted PpChit1 reduces Leishmania major development in its natural vector, the sand fly Phlebotomus papatasi
Abstract
Background: During its developmental cycle within the sand fly vector, Leishmania must survive an early proteolytic attack, escape the peritrophic matrix, and then adhere to the midgut epithelia in order to prevent excretion with remnants of the blood meal. These three steps are critical for the establishment of an infection within the vector and are linked to interactions controlling species-specific vector competence. PpChit1 is a midgut-specific chitinase from Phlebotomus papatasi presumably involved in maturation and degradation of the peritrophic matrix. Sand fly midgut chitinases, such as PpChit1, whether acting independently or in a synergistic manner with Leishmania-secreted chitinase, possibly play a role in the Leishmania escape from the endoperitrophic space. Thus, we predicted that silencing of sand fly chitinase will lead to reduction or elimination of Leishmania within the gut of the sand fly vector.
Methodology/principal findings: We used injection of dsRNA to induce knock down of PpChit1 transcripts (dsPpChit1) and assessed the effect on protein levels post blood meal (PBM) and on Leishmania major development within P. papatasi. Injection of dsPpChit1 led to a significant reduction of PpChit1 transcripts from 24 hours to 96 hours PBM. More importantly, dsPpChit1 led to a significant reduction in protein levels and in the number of Le. major present in the midgut of infected P. papatasi following a infective blood meal.
Conclusion/significance: Our data supports targeting PpChit1 as a potential transmission blocking vaccine candidate against leishmaniasis.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures
References
-
- Hill CA, Kafatos FC, Stansfield SK, Collins FH. Arthropod-borne diseases: vector control in the genomics era. Nat Rev Microbiol. 2005;3:262–268. - PubMed
-
- Coutinho-Abreu IV, Ramalho-Ortigao M. Transmission blocking vaccines to control insect-borne diseases: a review. Mem Inst Oswaldo Cruz. 2010;105:1–12. - PubMed
-
- Borovsky D, Schlein Y. Trypsin and chymotrypsin-like enzymes of the sandfly Phlebotomus papatasi infected with Leishmania and their possible role in vector competence. Med Vet Entomol. 1987;1:235–242. - PubMed
-
- Dillon RJ, Lane RP. Bloodmeal digestion in the midgut of Phlebotomus papatasi and Phlebotomus langeroni. Med Vet Entomol. 1993;7:225–232. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
