Initialization Parameter Sweep in ATHENA: Optimizing Neural Networks for Detecting Gene-Gene Interactions in the Presence of Small Main Effects
- PMID: 21152364
- PMCID: PMC2997651
- DOI: 10.1145/1830483.1830519
Initialization Parameter Sweep in ATHENA: Optimizing Neural Networks for Detecting Gene-Gene Interactions in the Presence of Small Main Effects
Abstract
Recent advances in genotyping technology have led to the generation of an enormous quantity of genetic data. Traditional methods of statistical analysis have proved insufficient in extracting all of the information about the genetic components of common, complex human diseases. A contributing factor to the problem of analysis is that amongst the small main effects of each single gene on disease susceptibility, there are non-linear, gene-gene interactions that can be difficult for traditional, parametric analyses to detect. In addition, exhaustively searching all multi-locus combinations has proved computationally impractical. Novel strategies for analysis have been developed to address these issues. The Analysis Tool for Heritable and Environmental Network Associations (ATHENA) is an analytical tool that incorporates grammatical evolution neural networks (GENN) to detect interactions among genetic factors. Initial parameters define how the evolutionary process will be implemented. This research addresses how different parameter settings affect detection of disease models involving interactions. In the current study, we iterate over multiple parameter values to determine which combinations appear optimal for detecting interactions in simulated data for multiple genetic models. Our results indicate that the factors that have the greatest influence on detection are: input variable encoding, population size, and parallel computation.
Figures





Similar articles
-
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.Cochrane Database Syst Rev. 2022 Feb 1;2(2022):CD014217. doi: 10.1002/14651858.CD014217. Cochrane Database Syst Rev. 2022. PMID: 36321557 Free PMC article.
-
Power of grammatical evolution neural networks to detect gene-gene interactions in the presence of error.BMC Res Notes. 2008 Aug 13;1:65. doi: 10.1186/1756-0500-1-65. BMC Res Notes. 2008. PMID: 18710518 Free PMC article.
-
Understanding the Evolutionary Process of Grammatical Evolution Neural Networks for Feature Selection in Genetic Epidemiology.Proc IEEE Symp Comput Intell Bioinforma Comput Biol. 2006 Sep 28;2006:1-8. doi: 10.1109/CIBCB.2006.330945. Proc IEEE Symp Comput Intell Bioinforma Comput Biol. 2006. PMID: 20634919 Free PMC article.
-
Comparison of approaches for machine-learning optimization of neural networks for detecting gene-gene interactions in genetic epidemiology.Genet Epidemiol. 2008 May;32(4):325-40. doi: 10.1002/gepi.20307. Genet Epidemiol. 2008. PMID: 18265411
-
Translational Metabolomics of Head Injury: Exploring Dysfunctional Cerebral Metabolism with Ex Vivo NMR Spectroscopy-Based Metabolite Quantification.In: Kobeissy FH, editor. Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects. Boca Raton (FL): CRC Press/Taylor & Francis; 2015. Chapter 25. In: Kobeissy FH, editor. Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects. Boca Raton (FL): CRC Press/Taylor & Francis; 2015. Chapter 25. PMID: 26269925 Free Books & Documents. Review.
Cited by
-
Integrating heterogeneous high-throughput data for meta-dimensional pharmacogenomics and disease-related studies.Pharmacogenomics. 2012 Jan;13(2):213-22. doi: 10.2217/pgs.11.145. Pharmacogenomics. 2012. PMID: 22256870 Free PMC article.
-
ATHENA: A knowledge-based hybrid backpropagation-grammatical evolution neural network algorithm for discovering epistasis among quantitative trait Loci.BioData Min. 2010 Sep 27;3(1):5. doi: 10.1186/1756-0381-3-5. BioData Min. 2010. PMID: 20875103 Free PMC article.
-
Detecting epistasis in human complex traits.Nat Rev Genet. 2014 Nov;15(11):722-33. doi: 10.1038/nrg3747. Epub 2014 Sep 9. Nat Rev Genet. 2014. PMID: 25200660 Review.
-
Biologically inspired intelligent decision making: a commentary on the use of artificial neural networks in bioinformatics.Bioengineered. 2014 Mar-Apr;5(2):80-95. doi: 10.4161/bioe.26997. Epub 2013 Dec 16. Bioengineered. 2014. PMID: 24335433 Free PMC article. Review.
-
ATHENA: the analysis tool for heritable and environmental network associations.Bioinformatics. 2014 Mar 1;30(5):698-705. doi: 10.1093/bioinformatics/btt572. Epub 2013 Oct 21. Bioinformatics. 2014. PMID: 24149050 Free PMC article.
References
-
- Bishop CM. Neural Networks for Pattern Recognition. Oxford University Press; London: 1995.
-
- Dudek SM, Motsinger AA, Velez DR, Williams SM, Ritchie MD. Data Simulation Software for Whole-Genome Association and Other Studies in Human Genetics. Pac Symp BioComput. 2006:499–510. - PubMed
-
- Edwards TL, Bush WS, Turner SD, Dudek SM, Torstenson ES, Schmidt M, Martin E, Ritchie MD. Generating Linkage Disequilibrium Patterns in Data Simulations Using genomeSIMLA. Lecture Notes in Computer Science. 2008;4793:24–35. - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources