Golden hamster myoid cells during active and inactive states of spermatogenesis: correlation of testosterone levels with structure
- PMID: 2115290
- DOI: 10.1002/aja.1001880310
Golden hamster myoid cells during active and inactive states of spermatogenesis: correlation of testosterone levels with structure
Abstract
Myoid cells were examined quantitatively in adult golden hamsters with active spermatogenesis and compared with hamsters in which the testes were regressed due to a modification in the light-dark cycle. A detailed morphometric study was undertaken utilizing animals previously examined. The cell-surface area and volumes of most organelles were not significantly different in animals which were gonadally active as compared with regressed animals. A slight, but significant, increase in nuclear volume (31%) and a slight, but significant, decrease (28%) in cell volume were recorded for regressed animals. The total volume of pinocytotic vesicles was increased dramatically (approximately threefold) in active animals in comparison with inactive animals (P less than 0.01), indicating that an increase in non-specific transport across the myoid cell is associated with spermatogenic activity. Intravascularly injected horseradish peroxidase was capable of entering pinocytotic vesicles in both active and inactive animals. Plasma luteinizing hormone (LH) as well as plasma and testicular testosterone levels were weakly (r = 0.64, 0.68, and 0.65, respectively), but significantly (P less than 0.05), correlated with cell size. Plasma and testicular testosterone were correlated with the total volume of pinocytotic vesicles (r = 0.74 and 0.68, respectively). The data indicate that although the rat myoid cell possesses receptors for testosterone, there are few structural manifestations of the hamster myoid cell that correlate well with testosterone levels. Thus, the hamster myoid cell differs from two other hormone-responsive somatic cells in the testis, the Sertoli cell and the Leydig cell, that show dramatic structural alterations with changes in gonadal activity and striking correlations of structural features with functional measures.(ABSTRACT TRUNCATED AT 250 WORDS)