Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Apr;38(4):613-22.
doi: 10.1007/s00259-010-1684-x. Epub 2010 Dec 10.

Preliminary evaluation of (177)Lu-labeled knottin peptides for integrin receptor-targeted radionuclide therapy

Affiliations

Preliminary evaluation of (177)Lu-labeled knottin peptides for integrin receptor-targeted radionuclide therapy

Lei Jiang et al. Eur J Nucl Med Mol Imaging. 2011 Apr.

Abstract

Purpose: Cystine knot peptides (knottins) 2.5D and 2.5F were recently engineered to bind integrin receptors with high affinity and specificity. These receptors are overexpressed on the surface of a variety of malignant human tumor cells and tumor neovasculature. In this study, 2.5D and 2.5F were labeled with a therapeutic radionuclide, (177)Lu, and the resulting radiopeptides were then evaluated as potential radiotherapeutic agents in a murine model of human glioma xenografts.

Methods: Knottins 2.5D and 2.5F were synthesized using solid phase peptide synthesis, folded in vitro, and site-specifically coupled with 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (DOTA) at their N terminus for (177)Lu radiolabeling. The stability of the radiopeptides (177)Lu-DOTA-2.5D and (177)Lu-DOTA-2.5F was tested in both phosphate-buffered saline (PBS) and mouse serum. Cell uptake assays of the radiolabeled peptides were performed in U87MG integrin-expressing human glioma cells. The biodistribution studies of both (177)Lu-DOTA-2.5D and (177)Lu-DOTA-2.5F were examined in U87MG tumor-bearing athymic nu/nu mice. Radiation absorbed doses for the major tissues of a human adult male were calculated based on the mouse biodistribution results.

Results: DOTA-2.5D and DOTA-2.5F were labeled with (177)Lu at over 55% efficiency. High radiochemical purity for both radiocomplexes (> 95%) could be achieved after high performance liquid chromatography (HPLC) purification. Both radiopeptides were stable in PBS and mouse serum. Compared to (177)Lu-DOTA-2.5D (0.39 and 0.26 %ID/g at 2 and 24 h, respectively), (177)Lu-DOTA-2.5F showed much higher tumor uptake (2.16 and 0.78 %ID/g at 2 and 24 h, respectively). It also displayed higher tumor to blood ratios than that of (177)Lu-DOTA-2.5D (31.8 vs 18.7 at 24 h and 52.6 vs 20.6 at 72 h). Calculation of radiodosimetry for (177)Lu-DOTA-2.5D and (177)Lu-DOTA-2.5F suggested that tumor and kidney were tissues with the highest radiation absorbed doses. Moreover, (177)Lu-DOTA-2.5F had a higher tumor to kidney radiation absorbed dose ratio than that of (177)Lu-DOTA-2.5D.

Conclusion: Cystine knot peptides can be successfully radiolabeled with (177)Lu for potential therapeutic applications. Knottin 2.5F labeled with (177)Lu exhibits favorable distribution in murine U87MG xenograft model; thus, it is a promising agent for radionuclide therapy of integrin-positive tumors.

PubMed Disclaimer

Comment in

References

    1. Nat Clin Pract Oncol. 2007 Oct;4(10):556-7 - PubMed
    1. J Mol Biol. 1999 Dec 17;294(5):1327-36 - PubMed
    1. Bioconjug Chem. 2009 Dec;20(12):2199-213 - PubMed
    1. Cell Mol Life Sci. 1999 Oct 30;56(5-6):427-41 - PubMed
    1. Mol Cancer Ther. 2006 Nov;5(11):2624-33 - PubMed

Publication types

MeSH terms