PKCγ is required for ethanol-induced increases in GABA(A) receptor α4 subunit expression in cultured cerebral cortical neurons
- PMID: 21155805
- PMCID: PMC3033448
- DOI: 10.1111/j.1471-4159.2010.07140.x
PKCγ is required for ethanol-induced increases in GABA(A) receptor α4 subunit expression in cultured cerebral cortical neurons
Abstract
Ethanol exposure produces alterations in GABA(A) receptor function and expression associated with CNS hyperexcitability, but the mechanisms of these effects are unknown. Ethanol is known to increase both GABA(A) receptor α4 subunits and protein kinase C (PKC) isozymes in vivo and in vitro. Here, we investigated ethanol regulation of GABA(A) receptor α4 subunit expression in cultured cortical neurons to delineate the role of PKC. Cultured neurons were prepared from rat pups on postnatal day 0-1 and tested after 18 days. GABA(A) receptor α4 subunit surface expression was assessed using P2 fractionation and surface biotinylation following ethanol exposure for 4 h. Miniature inhibitory post-synaptic currents were measured using whole cell patch clamp recordings. Ethanol increased GABA(A) receptor α4 subunit expression in both the P2 and biotinylated fractions, while reducing the decay time constant in miniature inhibitory post-synaptic currents, with no effect on γ2 or δ subunits. PKC activation mimicked ethanol effects, while the PKC inhibitor calphostin C prevented ethanol-induced increases in GABA(A) receptor α4 subunit expression. PKCγ siRNA knockdown prevented ethanol-induced increases in GABA(A) receptor α4 subunit expression, but inhibition of the PKCβ isoform with PKCβ pseudosubstrate had no effect. We conclude that PKCγ regulates ethanol-induced alterations in α4-containing GABA(A) receptors.
© 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.
Figures





References
-
- Bencsits E, Ebert V, Tretter V, Sieghart W. A significant part of native gamma-aminobutyric AcidA receptors containing alpha4 subunits do not contain gamma or delta subunits. J Biol Chem. 1999;274:19613–19616. - PubMed
-
- Bowers BJ, Owen EH, Collins AC, Abeliovich A, Tonegawa S, Wehner JM. Decreased ethanol sensitivity and tolerance development in gamma-protein kinase C null mutant mice is dependent on genetic background. Alcohol Clin Exp Res. 1999;23:387–397. - PubMed
-
- Brandon NJ, Delmas P, Kittler JT, McDonald BJ, Sieghart W, Brown DA, Smart TG, Moss SJ. GABAA receptor phosphorylation and functional modulation in cortical neurons by a protein kinase C-dependent pathway. J Biol Chem. 2000;275:38856–38862. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources