Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Mar;55(2):143-51.
doi: 10.1093/annhyg/meq080. Epub 2010 Dec 14.

Developing the function of 'Magnitude-of-Effect' (MoE) for artificial neural networks to demonstrate the causal effect of exposure variables on outcome variable

Affiliations

Developing the function of 'Magnitude-of-Effect' (MoE) for artificial neural networks to demonstrate the causal effect of exposure variables on outcome variable

Farman A Moayed et al. Ann Occup Hyg. 2011 Mar.

Abstract

Statistical analysis and logistic regression (LR) in particular are among the most popular tools being used by safety professionals and practitioners to assess the association between exposures and possible occupational disorders or diseases and predict the outcome. Recently, artificial neural network (ANN) models are gradually finding their way into safety field. It has been shown that they are capable of predicting outcomes more accurately than LR, but they are incapable of demonstrating the direct correlation between exposure variables and a possible outcome variable. The objective of this study was to develop a mathematical function that can use the result of ANN models to produce a measure for evaluating the direct association between exposure and possible outcome variables. This function was referred to as the function of Magnitude-of-Effect (MoE). Safety experts and practitioners can use the MoE function to interpret how strongly an exposure variable can affect the outcome variable, similar to an odds ratio, which can be calculated by using estimated parameters in LR models. The significance of such achievement is that it can eliminate one of the ANN model's shortcoming and make them more applicable in the occupational safety and health engineering field.

PubMed Disclaimer