Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Jul;259(1 Pt 2):F9-17.
doi: 10.1152/ajprenal.1990.259.1.F9.

Endothelium-derived relaxing factor influences renal vascular resistance

Affiliations

Endothelium-derived relaxing factor influences renal vascular resistance

J Radermacher et al. Am J Physiol. 1990 Jul.

Abstract

The mechanism of action of different vasodilators was investigated in the isolated perfused kidney of the rat. Acetylcholine (ACh, 10 nM-1 microM) and ATP (10 nM-1 microM), compounds known to relax isolated arteries in an endothelium-dependent fashion, caused concentration-dependent decreases in renal vascular resistance (RVR). Also, the endothelium-independent vasodilators verapamil (100 nM-10 microM), glyceryl trinitrate (GTN, 1-100 microM), and sodium nitroprusside (SNP, 1-100 microM) reduced RVR concentration dependently. Gossypol (10 microM, 5 min), an inhibitor of endothelium-derived relaxing factor (EDRF) production and/or release, increased basal RVR by 5% and significantly inhibited the vasodilator effects of ACh and ATP but had no effect on verapamil- or GTN-induced decreases in RVR. Methylene blue (MB) increased RVR dose dependently by up to 50%. About 50% of this effect could be antagonized with phentolamine (1 microM). MB abolished the relaxant response to ATP and attenuated the response to ACh. The dose-response curve of SNP was shifted to the right, and the relaxation to verapamil was slightly reduced. L-NG-methylarginine (100 microM) increased RVR by approximately 20%, and this effect was completely reversed by L-arginine (1 mM). N omega-nitro-L-arginine (100 microM) increased RVR by approximately 40% and attenuated the response to ATP but had no effect on the SNP-induced decrease in RVR. These results suggest that EDRF plays an important role in the regulation of RVR.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources