Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Mar;32(8):2013-20.
doi: 10.1016/j.biomaterials.2010.11.049. Epub 2010 Dec 16.

Fabrication of self-assembling D-form peptide nanofiber scaffold d-EAK16 for rapid hemostasis

Affiliations

Fabrication of self-assembling D-form peptide nanofiber scaffold d-EAK16 for rapid hemostasis

Zhongli Luo et al. Biomaterials. 2011 Mar.

Abstract

We previously reported a class of designer self-assembling peptides that form 3-dimensional nanofiber scaffolds using only l-amino acids. Here we report that using d-amino acids, the chiral self-assembling peptide d-EAK16 also forms 3-dimensional nanofiber scaffold that is indistinguishable from its counterpart l-EAK16. These chiral peptides containing all d-amino acids, d-EAK16, self-assemble into well-ordered nanofibers. However with alternating d- and l-amino acids, EAK16 and EAK16, showed poor self-assembling properties. To fully understand individual molecular building blocks and their structures, assembly properties and dynamic behaviors for rapid hemostasis, we used circular dichroism, atomic force microscopy and scanning electron microscopy to study in detail the peptides. We also used rheological measurement to study the hydrogel gelation property. Furthermore, we used an erythrocyte-agglutination test and a rabbit liver wound healing model, particularly in the transverse rabbit liver experiments, to examine rapid hemostasis. We showed that 1% d-EAK16 for the liver wound hemostasis took ∼20 s, but using 1% of EAK16 and EAK16 that have alternating chiral d- and l-amino acids took ∼70 and ∼80 s, respectively. We here propose a plausible model not only to provide insights in understanding the chiral assembly properties for rapid hemostasis, but also to aid in further design of self-assembling d-form peptide scaffolds for clinical applications.

PubMed Disclaimer

Publication types

LinkOut - more resources