Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Jun;4(6):978-92.
doi: 10.1101/gad.4.6.978.

A novel enhancer in the immunoglobulin lambda locus is duplicated and functionally independent of NF kappa B

Affiliations
Free article

A novel enhancer in the immunoglobulin lambda locus is duplicated and functionally independent of NF kappa B

J Hagman et al. Genes Dev. 1990 Jun.
Free article

Abstract

As a first step toward defining the elements necessary for lambda immunoglobulin gene regulation, DNase I hypersensitive sites were mapped in the mouse lambda locus. A hypersensitive site found 15.5 kb downstream of C lambda 4 was present in all the B-cell but not in the T-cell lines tested. This site coincided with a strong B-cell-specific transcriptional enhancer (E lambda 2-4). This novel enhancer is active in myeloma cells, regardless of the status of endogenous lambda genes, but is inactive in a T-cell line and in fibroblasts. The enhancer E lambda 2-4 functions in the absence of the transcription factor NF kappa B, which is necessary for kappa enhancer function. No evidence could be found for NF kappa B binding by this element. Rearrangement of V lambda 2 to JC lambda 3 or JC lambda genes deletes E lambda 2-4; however, a second strong enhancer was found 35 kb downstream of C lambda 1, which cannot be eliminated by lambda gene rearrangements. The second lambda enhancer (E lambda 3-1) is 90% homologous to the E lambda 2-4 sequence in the region determined to comprise the active enhancer and likewise lacks the consensus binding site for NF kappa B. The data support a model for the independent activation of kappa and lambda gene expression based on locus-specific regulation at the enhancer level.

PubMed Disclaimer

Publication types

MeSH terms

Associated data

LinkOut - more resources