Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2010 Dec 30;29(30):3172-85.
doi: 10.1002/sim.4133.

Modelling competing risks data with missing cause of failure

Affiliations
Comparative Study

Modelling competing risks data with missing cause of failure

Giorgos Bakoyannis et al. Stat Med. .

Abstract

When competing risks data arise, information on the actual cause of failure for some subjects might be missing. Therefore, a cause-specific proportional hazards model together with multiple imputation (MI) methods have been used to analyze such data. Modelling the cumulative incidence function is also of interest, and thus we investigate the proportional subdistribution hazards model (Fine and Gray model) together with MI methods as a modelling approach for competing risks data with missing cause of failure. Possible strategies for analyzing such data include the complete case analysis as well as an analysis where the missing causes are classified as an additional failure type. These approaches, however, may produce misleading results in clinical settings. In the present work we investigate the bias of the parameter estimates when fitting the Fine and Gray model in the above modelling approaches. We also apply the MI method and evaluate its comparative performance under various missing data scenarios. Results from simulation experiments showed that there is substantial bias in the estimates when fitting the Fine and Gray model with naive techniques for missing data, under missing at random cause of failure. Compared to those techniques the MI-based method gave estimates with much smaller biases and coverage probabilities of 95 per cent confidence intervals closer to the nominal level. All three methods were also applied on real data modelling time to AIDS or non-AIDS cause of death in HIV-1 infected individuals.

PubMed Disclaimer

Publication types