Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Feb 2;133(4):668-71.
doi: 10.1021/ja107498y.

Intrinsic Z-DNA is stabilized by the conformational selection mechanism of Z-DNA-binding proteins

Affiliations

Intrinsic Z-DNA is stabilized by the conformational selection mechanism of Z-DNA-binding proteins

Sangsu Bae et al. J Am Chem Soc. .

Abstract

Z-DNA, a left-handed isoform of Watson and Crick’s B-DNA, is rarely formed without the help of high salt concentrations or negative supercoiling. However, Z-DNA-binding proteins can efficiently convert specific sequences of the B conformation into the Z conformation in relaxed DNA under physiological salt conditions. As in the case of many other specific interactions coupled with structural rearrangements in biology, it has been an intriguing question whether the proteins actively induce Z-DNAs or passively trap transiently preformed Z-DNAs. In this study, we used single-molecule fluorescence assays to observe intrinsic B-to-Z transitions, protein association/dissociation events, and accompanying B-to-Z transitions. The results reveal that intrinsic Z-DNAs are dynamically formed and effectively stabilized by Z-DNA-binding proteins through efficient trapping of the Z conformation rather than being actively induced by them. Our study provides, for the first time, detailed pictures of the intrinsic B-to-Z transition dynamics and protein-induced B-to-Z conversion mechanism at the single-molecule level.

PubMed Disclaimer

Publication types

LinkOut - more resources